精英家教网 > 高中数学 > 题目详情
6.设函数f(x)=(mx+n)lnx.若曲线y=f(x)在点P(e,f(e))处的切线方程为y=2x-e(e为自然对数的底数).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若a,b∈R+,试比较$\frac{f(a)+f(b)}{2}$与$f(\frac{a+b}{2})$的大小,并予以证明.

分析 (Ⅰ)求出函数f(x)的解析式,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(Ⅱ)求出f′(x),令F(x)=f(a)+f(x)-2f($\frac{a+x}{2}$),求出F′(x),利用函数的单调性求出当x=a时,F(x)的最小值0,再根据b>a,即可确定F(b)>F(a),从而证得f(a)+f(b)-2f($\frac{a+b}{2}$)>0,得到$\frac{f(a)+f(b)}{2}$与$f(\frac{a+b}{2})$的大小即可.

解答 解:f′(x)=mlnx+m+$\frac{n}{x}$,(x>0),
故f(e)=me+n,f′(e)=2m+$\frac{n}{e}$,
故切线方程是:y=(2m+$\frac{n}{e}$)x-me=2x-e,
故m=1,n=0,
故f(x)=xlnx;
(Ⅰ)∵f(x)的定义域是(0,+∞),
f′(x)=1+lnx,
令f′(x)>0,解得:x>$\frac{1}{e}$,
令f′(x)<0,解得:0<x<$\frac{1}{e}$,
故f(x)在(0,$\frac{1}{e}$)递减,在($\frac{1}{e}$,+∞);
(Ⅱ)不妨设0<a≤b,∵f(x)=xlnx,
∴f'(x)=lnx+1,
令F(x)=f(a)+f(x)-2f($\frac{a+x}{2}$),
∴F′(x)=f′(x)-f′($\frac{a+x}{2}$)=lnx-ln$\frac{a+x}{2}$,
当0<x<a时,F'(x)<0,当a<x时,F'(x)>0,
∴F(x)在(0,a)上为减函数,F(x)在(a,+∞)上为增函数,
∴当x=a时,F(x)min=F(a)=0,
∵b≥a,
∴F(b)>F(a),
∴f(a)+f(b)-2f($\frac{a+b}{2}$)>0,
∴$\frac{f(a)+f(b)}{2}$>$f(\frac{a+b}{2})$.

点评 本题考查了利用导数研究函数的单调性,对于利用导数研究函数的单调性,注意导数的正负对应着函数的单调性.利用导数研究函数问题时,经常会运用分类讨论的数学思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知焦点在x轴上的椭圆的离心率为$\frac{1}{2}$,且它的长轴长等于4,则椭圆的标准方程是(  )
A.$\frac{x^2}{4}+\frac{y^2}{3}$=1B.$\frac{x^2}{16}+\frac{y^2}{12}=1$C.$\frac{x^2}{4}+{y^2}=1$D.$\frac{x^2}{16}+\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,某地区有四个公司分别位于矩形ABCD的四个顶点,且AB=1km,BC=2km,四个公司商量准备在矩形空地中规划一个三角形区域AMN种植花草,其中M,N分别在直线BC,CD上运动,∠MAN=30°,设∠BAM=α,当三角AMN的面积最小时,此时α=(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)=\sqrt{x}sinx$,则f'(π)=(  )
A.$\sqrt{π}$B.$\frac{{\sqrt{π}}}{2π}$C.$-\sqrt{π}$D.$\frac{{\sqrt{2π}}}{2π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知菱形ABCD的边长为2,∠ABC=60°,则$\overrightarrow{BD}•\overrightarrow{CD}$=(  )
A.-6B.-3C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列集合中,不同于另外三个集合的是③.
①{x|x=1}   ②{y|(y-1)2=0}      ③{x=1}    ④{1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2-2x,设$g(x)=\frac{1}{x}•f({x+1})$.
(1)求函数g(x)的表达式,并求函数g(x)的定义域;
(2)判断函数g(x)的奇偶性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列五个命题中正确命题的个数是(  )
(1)对于命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1<0;
(2)m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件;
(3)已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为$\widehaty=1.23x+0.08$;
(4)已知正态总体落在区间(0.7,+∞)的概率是0.5,则相应的正态曲线f(x)在x=0.7时,达到最高点;
(5)曲线y=x2与y=x所围成的图形的面积是$S=\int_0^1{({x-{x^2}})dx}$.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在△ABC中,$\overrightarrow{BF}=2\overrightarrow{FC}$,$\overrightarrow{AM}=\overrightarrow{MF}=\overrightarrow{FN}$.
(1)用$\overrightarrow{AB}$,$\overrightarrow{AC}$表示$\overrightarrow{AF}$;
(2)若$\overrightarrow{AB}⊥\overrightarrow{AC}$,$|{\overrightarrow{AB}}|=\sqrt{2}|{\overrightarrow{AC}}|$,求证:$\overrightarrow{AN}⊥\overrightarrow{BC}$;
(3)若$\overrightarrow{BM}•\overrightarrow{BC}=|{\overrightarrow{MF}}|=1$,求$\overrightarrow{BA}•\overrightarrow{BN}$的值.

查看答案和解析>>

同步练习册答案