精英家教网 > 高中数学 > 题目详情

【题目】如图1,四边形中, ,将四边形沿着折叠,得到图2所示的三棱锥,其中

(1)证明:平面平面

(2)若中点,求二面角的余弦值.

【答案】(Ⅰ)见解析;(Ⅱ).

【解析】试题分析: (1)由面面垂直的判定定理得出证明; (2)以E为原点,建立空间直角坐标系,写出各点坐标,设 ,由,求出 ,求出平面 的一个法向量,由已知条件找出平面 的一个法向量,利用公式求出二面角的余弦值.

试题解析:(Ⅰ)因为,可得为等腰直角三角形,

,又,且平面

平面,又平面

所以平面平面.

(Ⅱ)以为原点,以的方向为轴正方向, 的方向为轴正方向,建立如图所示的空间直角坐标系.

点作平面的垂线,垂足为,根据对称性,显然点在轴上,设.由题设条件可得下列坐标: . ,由于,所以,解得,则点坐标为. 由于 ,设平面的法向量

,由此可得.

由于 ,则为平面的一个法向量,

因为二面角为锐角,

则二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形序号是(  )

A.①②
B.③④
C.②③
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α,且sin cos .

(1)cos α的值;

(2)sin(αβ)=- β,求cos β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线倾斜角是且过抛物线的焦点,直线被抛物线截得的线段长是16,双曲线 的一个焦点在抛物线的准线上,则直线轴的交点到双曲线的一条渐近线的距离是( )

A. 2 B. C. D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求适合下列条件的双曲线的标准方程:

(1)以椭圆的长轴端点为焦点,且经过点P(5, );

(2)过点P1(3,-4 ),P2(,5).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列命题是全称命题还是特称命题,并判断其真假.

(1)对数函数都是单调函数;

(2)至少有一个整数,它既能被11整除,又能被9整除;

(3)x{x|x0}

(4)x0Zlog2x02.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家为了鼓励节约用水,实行阶梯用水收费制度,价格参照表如表:

用水量(吨)

单价(元/吨)

0~20(含)

2.5

20~35(含)

3

超过20吨不超过35吨的部分按3元/吨收费

35以上

4

超过35吨的部分按4元/吨收费


(1)若小明家10月份用水量为30吨,则应缴多少水费?
(2)若小明家10月份缴水费99元,则小明家10月份用水多少吨?
(3)写出水费y与用水量x之间的函数关系式,并画出函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=-n2n,求数列{|an|}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列函数的定义域
(1)f(x)=
(2)f(x)=
(3)f(x)=

查看答案和解析>>

同步练习册答案