精英家教网 > 高中数学 > 题目详情
9.已知全集U={1,2,3},集合A={1},B={2},则∁U(A∪B)=(  )
A.B.UC.{1,2}D.{3}

分析 根据并集和补集的定义写出运算结果即可.

解答 解:全集U={1,2,3},集合A={1},B={2},
则A∪B={1,2},
所以∁U(A∪B)={3}.
故选:D.

点评 本题考查了集合的定义与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年河南省商丘市高一文下学期期末考数学试卷(解析版) 题型:选择题

若向量两两所成的角相等,且等于( )

A.2 B. C. D.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年河北省保定市高一上学期期中考试数学试卷(解析版) 题型:选择题

已知集合A={2,3},B={x|mx﹣6=0},若B⊆A,则实数m=( )

A.3 B.2

C.2或3 D.0或2或3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知两定点A(-2,0),B(1,0),若圆心在直线x-y-1=0上且半径为1的动圆P上存在一点Q满足|QA|=2|QB|,则点P横坐标a的取值范围为$\frac{3-\sqrt{17}}{2}≤a≤1$或2≤a≤$\frac{3+\sqrt{17}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xoy中,圆C的参数方程为$\left\{\begin{array}{l}x=2+2cosφ\\ y=2sinφ\end{array}\right.$(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)若直线$l:\left\{\begin{array}{l}x=m+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$(t为参数)与圆C交于A,B两点,且$|{AB}|=\sqrt{15}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=b(0<b<A)的三个相邻交点的横坐标分别是1,2,4,则f(x)的单调递增区间是(  )
A.[3k-$\frac{3}{2}$,3k],k∈ZB.[3k,3k+$\frac{3}{2}$],k∈ZC.[3kπ-$\frac{3}{2}$,3kπ],k∈ZD.[3kπ,3kπ+$\frac{3}{2}$],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,是一个几何体的三视图,则此几何体的外接球的半径为(  )
A.$\frac{\sqrt{34}}{2}$B.$\frac{\sqrt{41}}{2}$C.17D.41

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作x轴的垂线,交双曲线C于M,N两点,A为左顶点,设∠MAN=θ,双曲线C的离心率为f(θ),则f($\frac{2π}{3}$)-f($\frac{π}{3}$)等于(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某公司2017年元旦晚会现场,为了活跃气氛,将在晚会节目表演过程中进行抽奖活动.
(1)现需要从第一排就座的6位嘉宾A、B、C、D、E、F中随机抽取2人上台抽奖,求嘉宾A和嘉宾B至少有一人上台抽奖的概率;
(2)抽奖活动的规则是:嘉宾通过操作按键使电脑自动产生两个[0,1]之间的随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该嘉宾中奖;若电脑显示“谢谢”,则不中奖.求该嘉宾中奖的概率.

查看答案和解析>>

同步练习册答案