精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=b(0<b<A)的三个相邻交点的横坐标分别是1,2,4,则f(x)的单调递增区间是(  )
A.[3k-$\frac{3}{2}$,3k],k∈ZB.[3k,3k+$\frac{3}{2}$],k∈ZC.[3kπ-$\frac{3}{2}$,3kπ],k∈ZD.[3kπ,3kπ+$\frac{3}{2}$],k∈Z

分析 三角函数的图象与直线y=b(0<b<A)的三个相邻交点的横坐标分别是1,2,4,至少提供两个方面的信息:
①第一个交点与第三个交点的差是一个周期;
②第一个交点与第二个交点的中点横坐标对应的函数值是最大值或最小值;
从这两个方面考虑求得参数ω,φ,从而利用三角函数的单调性求答案.

解答 解:与直线y=b(0<b<A)的三个相邻交点的横坐标分别是1,2,4,
知函数的周期为T=$\frac{2π}{ω}$=4-1=3,
解得ω=$\frac{2π}{3}$;
再由三角函数的图象与直线y=b(0<b<A)知:
1与2的中点必为函数的最大值的横坐标,
由五点法知$\frac{2π}{3}$×$\frac{3}{2}$+φ=$\frac{π}{2}$,
解得φ=-$\frac{π}{2}$;
∴f(x)=Asin($\frac{2π}{3}$x-$\frac{π}{2}$)=-Acos($\frac{2π}{3}$x),
令2kπ≤$\frac{2π}{3}$x≤2kπ+π,k∈Z,
解得3k≤x≤3k+$\frac{3}{2}$,k∈Z,
∴f(x)的单调递增区间是[3k,3k+$\frac{3}{2}$],(k∈Z).
故选:B.

点评 本题考查了三角函数的解析式以及三角函数的图象与性质的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年河南省商丘市高一文下学期期末考数学试卷(解析版) 题型:选择题

掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上.下列结果正确的是( )

A.P(M)=,P(N)=

B.P(M)=,P(N)=

C.P(M)=,P(N)=

D.P(M)=,P(N)=

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.南宋数学家杨辉研究了垛积与各类多面体体积的联系,由多面体体积公式导出相应的垛积术公式.例如方亭(正四梭台)体积为V=$\frac{h}{3}$(a2+b2+ab)其中a为上底边长,b为下底边长,h为高.杨辉利用沈括隙积术的基础上想到:若由大小相等的圆球垛成类似于正四棱台的方垛,上底由a×a个球组成,以下各层的长、宽依次各增加一个球,共有n层,最下层(即下底)由b×b个球组成,杨辉给出求方垛中物体总数的公式如下:S=$\frac{n}{3}$(a2+b2+ab+$\frac{b-a}{2}$).根据以上材料,我们可得12+22+…+n2=$\frac{n(n+1)(2n+1)}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知过双曲线$\frac{x^2}{4}$-y2=1的右焦点作直线l与双曲线交于A,B两点,若有且仅存在三条直线使得|AB|=a,则实数a的取值范围为{4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知全集U={1,2,3},集合A={1},B={2},则∁U(A∪B)=(  )
A.B.UC.{1,2}D.{3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集U=R,A={x|x2>1},∁UA=(  )
A.[-1,1]B.(-∞,1)C.(-1,1)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数z=$\frac{1+ai}{1-i}$(a∈R)的虚部为1,则a=(  )
A.1B.-1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=$\sqrt{\frac{1}{4}[{c}^{2}{a}^{2}-(\frac{{c}^{2}+{a}^{2}-{b}^{2}}{2})^{2}]}$.现有周长为2$\sqrt{2}$+$\sqrt{5}$的△ABC满足sinA:sinB:sinC=($\sqrt{2}$-1):$\sqrt{5}$:($\sqrt{2}$+1),试用以上给出的公式求得△ABC的面积为(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{5}}{4}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\frac{2}{si{n}^{2}x}$+$\frac{1}{co{s}^{2}x}$的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案