| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{5}}{4}$ | D. | $\frac{\sqrt{5}}{2}$ |
分析 由题意和正弦定理求出a:b:c,结合条件求出a、b、c的值,代入公式求出△ABC的面积.
解答 解:因为sinA:sinB:sinC=($\sqrt{2}$-1):$\sqrt{5}$:($\sqrt{2}$+1),
所以由正弦定理得,a:b:c=($\sqrt{2}$-1):$\sqrt{5}$:($\sqrt{2}$+1),
又△ABC的周长为2$\sqrt{2}$+$\sqrt{5}$,
则a=($\sqrt{2}$-1)、b=$\sqrt{5}$、c=($\sqrt{2}$+1),
所以△ABC的面积S=$\sqrt{\frac{1}{4}[{c}^{2}{a}^{2}-{(\frac{{c}^{2}+{a}^{2}-{b}^{2}}{2})}^{2}]}$
=$\sqrt{\frac{1}{4}[{(\sqrt{2}+1)}^{2}{(\sqrt{2}-1)}^{2}-{(\frac{{(\sqrt{2}+1)}^{2}+{(\sqrt{2}-1)}^{2}-5}{2})}^{2}]}$
=$\sqrt{\frac{1}{4}{[1-(\frac{1}{2})}^{2}]}$=$\frac{\sqrt{3}}{4}$,
故选:A.
点评 本题考查正弦定理,以及新定义的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | [3k-$\frac{3}{2}$,3k],k∈Z | B. | [3k,3k+$\frac{3}{2}$],k∈Z | C. | [3kπ-$\frac{3}{2}$,3kπ],k∈Z | D. | [3kπ,3kπ+$\frac{3}{2}$],k∈Z |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| X | 1 | 2 | 3 |
| P | P1 | P2 | P3 |
| A. | P1=P2 | B. | P2=P3 | C. | P1=P3 | D. | P1=P2=P3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 1 | C. | -1或$\sqrt{2}$ | D. | -1或$\sqrt{10}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com