精英家教网 > 高中数学 > 题目详情
14.设离散型随机变量X的分布列为
X123
PP1P2P3
则EX=2的充要条件是(  )
A.P1=P2B.P2=P3C.P1=P3D.P1=P2=P3

分析 当EX=2时,由离散型随机变量X的分布列的性质列出方程组得P1=P3,当P1=P3时,P1+P2+P3=2P1+P2=1能求出EX=2.从而得到EX=2的充要条件是P1=P3

解答 解:由离散型随机变量X的分布列知:
当EX=2时,$\left\{\begin{array}{l}{{P}_{1}+{P}_{2}+{P}_{3}=1}\\{{P}_{1}+2{P}_{2}+3{P}_{3}=2}\end{array}\right.$,解得P1=P3
当P1=P3时,P1+P2+P3=2P1+P2=1.
EX=P1+2P2+3P3=4P1+2P2=2.
∴EX=2的充要条件是P1=P3
故选:C.

点评 本题考查离散型随机变量的数学期望为2的充要条件的求法,是基础题,解题时要认真审题,注意离散型随机变量的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.南宋数学家杨辉研究了垛积与各类多面体体积的联系,由多面体体积公式导出相应的垛积术公式.例如方亭(正四梭台)体积为V=$\frac{h}{3}$(a2+b2+ab)其中a为上底边长,b为下底边长,h为高.杨辉利用沈括隙积术的基础上想到:若由大小相等的圆球垛成类似于正四棱台的方垛,上底由a×a个球组成,以下各层的长、宽依次各增加一个球,共有n层,最下层(即下底)由b×b个球组成,杨辉给出求方垛中物体总数的公式如下:S=$\frac{n}{3}$(a2+b2+ab+$\frac{b-a}{2}$).根据以上材料,我们可得12+22+…+n2=$\frac{n(n+1)(2n+1)}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数z=$\frac{1+ai}{1-i}$(a∈R)的虚部为1,则a=(  )
A.1B.-1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=$\sqrt{\frac{1}{4}[{c}^{2}{a}^{2}-(\frac{{c}^{2}+{a}^{2}-{b}^{2}}{2})^{2}]}$.现有周长为2$\sqrt{2}$+$\sqrt{5}$的△ABC满足sinA:sinB:sinC=($\sqrt{2}$-1):$\sqrt{5}$:($\sqrt{2}$+1),试用以上给出的公式求得△ABC的面积为(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{5}}{4}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}是等差数列,a1=tan$\frac{π}{4}$,a5=13a1,设Sn为数列{(-1)nan}的前n项和,则S2016=(  )
A.2016B.-2016C.3024D.-3024

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在等差数列{an}中,若a22+2a2a8+a6a10=16,则a4a6=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.实验测得五组(x,y)的值是(1,2)(2,4)(3,4)(4,7)(5,8),若线性回归方程为$\stackrel{∧}{y}$=0.7x+$\stackrel{∧}{a}$,则$\stackrel{∧}{a}$的值是(  )
A.1.4B.1.9C.2.2D.2.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\frac{2}{si{n}^{2}x}$+$\frac{1}{co{s}^{2}x}$的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.从集合{$\frac{1}{2}$,$\frac{1}{3}$,2,3}中任取一个数记做a,从集合{-2,-1,1,2}中任取一个数记做b,则函数y=ax+b的图象经过第三象限的概率是$\frac{3}{8}$.

查看答案和解析>>

同步练习册答案