精英家教网 > 高中数学 > 题目详情

【题目】我国2019年新年贺岁大片《流浪地球》自上映以来引发了社会的广泛关注,受到了观众的普遍好评.假设男性观众认为《流浪地球》好看的概率为,女性观众认为《流浪地球》好看的概率为.某机构就《流浪地球》是否好看的问题随机采访了4名观众(其中2男2女).

(1)求这4名观众中女性认为好看的人数比男性认为好看的人数多的概率;

(2)设表示这4名观众中认为《流浪地球》好看的人数,求的分布列与数学期望.

【答案】(1)(2)见解析

【解析】

表示2名女性观众中认为好看的人数,表示2名男性观众中认为好看的人数,

.

(1) 设事件表示“这4名观众中女性认为好看的人数比男性认为好看的人数多”,则

,从而可得结果;

(2)的可能取值为0,1,2,3,4,求出相应的概率值,即可得到分布列与期望.

表示2名女性观众中认为好看的人数,表示2名男性观众中认为好看的人数,

.

(1)设事件表示“这4名观众中女性认为好看的人数比男性认为好看的人数多”,则

,

.

(2)的可能取值为0,1,2,3,4,

=

,

,

的分布列为

0

1

2

3

4

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线).

1求直线经过的定点坐标;

2若直线负半轴于,交轴正半轴于为坐标系原点,的面积为,求的最小值并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修:不等式选讲

已知函数f(x)=|2x+3|+|2x﹣1|.

(Ⅰ)求不等式f(x)<8的解集;

(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数对任意都有时,则方程的解为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有四件作品参加航模类作品比赛.已知这四件作品中恰有两件获奖,在结果揭晓前,甲、乙、丙、丁四位同学对这四件参赛作品的获奖情况预测如下.

甲说:“同时获奖.”

乙说:“不可能同时获奖.”

丙说:“获奖.”

丁说:“至少一件获奖”

如果以上四位同学中有且只有两位同学的预测是正确的,则获奖的作品是( )

A. 作品与作品B. 作品与作品C. 作品与作品D. 作品与作品

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了缓解日益拥堵的交通状况,不少城市实施车牌竞价策略,以控制车辆数量.某地车牌竞价的基本规则是:①“盲拍”,即所有参与竞拍的人都要网络报价一次,每个人不知晓其他人的报价,也不知道参与当期竞拍的总人数;②竞价时间截止后,系统根据当期车牌配额,按照竞拍人的出价从高到低分配名额.某人拟参加月份的车牌竞拍,他为了预测最低成交价,根据竞拍网站的数据,统计了最近个月参与竞拍的人数(见下表):

月份

月份编号

竞拍人数(万人)

(1)由收集数据的散点图发现,可用线性回归模型拟合竞拍人数(万人)与月份编号之间的相关关系.请用最小二乘法求关于的线性回归方程:,并预测月份参与竞拍的人数.

(2)某市场调研机构从拟参加月份车牌竞拍人员中,随机抽取了人,对他们的拟报价价格进行了调查,得到如下频数分布表和频率分布直方图:

报价区间(万元)

频数

(i)求的值及这位竞拍人员中报价大于万元的概率;

(ii)若月份车牌配额数量为,假设竞拍报价在各区间分布是均匀的,请你根据以上抽样的数据信息,预测(需说明理由)竞拍的最低成交价.

参考公式及数据:①回归方程,其中

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)求函数的单调减区间;

2)若函数在区间上的极大值为8,求在区间上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=lnax2+x+6).

1)若a=﹣1,求fx)的定义域,并讨论fx)的单调性;

2)若函数fx)的定义域为R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数是自然对数的底数)

(1)求函数的单调区间;

(2)若函数在区间内无零点,求的最大值.

查看答案和解析>>

同步练习册答案