精英家教网 > 高中数学 > 题目详情

如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.

求证:∠E=∠C.

见解析

解析证明 连接OD,因为BD=DC,O为AB的中点,

所以OD∥AC,于是∠ODB=∠C.
因为OB=OD,所以∠ODB=∠B于是∠B=∠C.
因为点A,E,B,D都在圆O上,且D,E为圆O上位于AB异侧的两点,所以∠E和∠B为同弧所对的圆周角,
故∠E=∠B.所以∠E=∠C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,是圆的直径,延长线上的一点,是圆的割线,过点的垂线,交直线于点,交直线于点,过点作圆的切线,切点为.

(1)求证:四点共圆;(2)若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,CD为Rt△ABC斜边AB边上的中线,CE⊥CD,CE=,连接DE交BC于点F,AC=4,BC=3.求证:

(1)△ABC∽△EDC;
(2)DF=EF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交于点F.

求证:FD2=FB·FC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

试说明矩形的四个顶点在以对角线的交点为圆心的同一个圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知AD是△ABC的内角平分线,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,梯形ABCD内接于⊙OADBC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E.

(1)求证:AB2DE·BC
(2)若BD=9,AB=6,BC=9,求切线PC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,为圆的切线,为切点,的角平分线与和圆分别交于点

(1)求证   (2)求的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知切⊙于点E,割线PBA交⊙于A、B两点,∠APE的平分线和AE、BE分别交于点C、D.

求证:(Ⅰ);   (Ⅱ).

查看答案和解析>>

同步练习册答案