精英家教网 > 高中数学 > 题目详情

试说明矩形的四个顶点在以对角线的交点为圆心的同一个圆上.

见解析

解析证明 ∵四边形ABCD为矩形,
∴OA=OC,OB=OD,又AC=DB,
∴OA=OC=OB=OD.
则点A、B、C、D到点O的距离相等,
∴A、B、C、D这四个点在以点O为圆心,OA为半径的同一个圆上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知相交于A、B两点,过A点作切线交于点E,连接EB并延长交于点C,直线CA交于点D,

(1)当点D与点A不重合时(如图1),证明:ED2=EB·EC;
(2)当点D与点A重合时(如图2),若BC=2,BE=6,求的直径长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是⊙O的直径,BC是⊙O的切线,B为切点,OC平行于弦AD,连结CD.
 
(1)求证:CD是⊙O的切线;
(2)过点DDEAB于点E,交AC于点P,求证:P点平分线段DE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(拓展深化)如图所示,△ABC内接于⊙O,AB=AC,直线XY切⊙O于点C,BD∥XY,AC、BD相交于E.

(1)求证:△ABE≌△ACD;
(2)若AB=6 cm,BC=4 cm,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,AD、CE是△ABC中边BC、AB的高,AD和CE相交于点F.

求证:AF·FD=CF·FE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.

求证:∠E=∠C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是⊙的直径, 是⊙的切线,的延长线交于点为切点.若的平分线和⊙分别交于点,求的值.
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是半径为的圆的两条弦,它们相交于的中点,若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,自⊙外一点引切线与⊙切于点的中点,过引割线交⊙两点. 求证:

查看答案和解析>>

同步练习册答案