精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=

(1)m=4时,求函数f(x)的定义域M;

(2)a,b∈RM时,证明:2|a+b|<|4+ab|.

【答案】(1)M={x|x≤﹣2x≥2};(2)见解析.

【解析】

试题(1)由题意和二次根式的被开方数非负,可得|x+1|+|x﹣1|≥4,运用绝对值的意义和对x讨论,解不等式即可得到所求定义域;

(2)可得﹣2<a,b<2,要证2|a+b|<|4+ab|,可证4(a+b)2<(4+ab)2作差4(a+b)2﹣(4+ab)2,运用平方差和因式分解,即可得证.

试题解析:

(1)解:当m=4时,由|x+1|+|x﹣1|≥4,

等价于

解得x≤﹣2x≥2x

则不等式的解集为M={x|x≤﹣2x≥2}

(2)解:证明:当a,bCRM时,即﹣2<a,b<2,

所以4(a+b)2﹣(4+ab)2=4(a2+2ab+b2)﹣(16+8ab+a2b2

=4a2+4b2﹣16﹣a2b2=(a2﹣4)(4﹣b2)<0,所以4(a+b)2<(4+ab)2

2|a+b|<|4+ab|.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某文化创意公司开发出一种玩具(单位:套)进行生产和销售.根据以往经验,每月生产x套玩具的成本p由两部分费用(单位:元)构成:.固定成本(与生产玩具套数x无关),总计一百万元;b.生产所需的直接总成本

1)问:该公司每月生产玩具多少套时,可使得平均每套所需成本费用最少?此时每套玩具的成本费用是多少?

2)假设每月生产出的玩具能全部售出,但随着x的增大,生产所需的直接总成本在急剧增加,因此售价也需随着x的增大而适当增加.设每套玩具的售价为q元,).若当产量为15000套时利润最大,此时每套售价为300元,试求b的值.(利润=销售收入-成本费用)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若不等式的解集为,求实数的值;

(2)在(1)的条件下,若存在实数使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足.

(1)若数列是等差数列,求的值;

(2)当时,求数列的前项和

(3)若对任意,都有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为 ,离心率为,且过点

)求椭圆的标准方程.

是椭圆上的四个不同的点,两条都不和轴垂直的直线分别过点 ,且这条直线互相垂直,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x3+ax2+bx+cxx1时都取得极值,求ab的值与函数fx)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是等差数列,满足,数列满足,且是等比数列.

1)求数列的通项公式;

2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某旅游区拟建一主题游乐园,该游乐区为五边形区域ABCDE,其中三角形区域ABE为主题游乐区,四边形区域为BCDE为休闲游乐区,AB、BC,CD,DE,EA,BE为游乐园的主要道路不考虑宽.

I求道路BE的长度;

求道路AB,AE长度之和的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构组织语文、数学学科能力竞赛,按照一定比例淘汰后,颁发一二三等奖.现有某考场的两科考试成绩数据统计如下图所示,其中数学科目成绩为二等奖的考生有人.

(Ⅰ)求该考场考生中语文成绩为一等奖的人数;

(Ⅱ)用随机抽样的方法从获得数学和语文二等奖的学生中各抽取人,进行综合素质测试,将他们的综合得分绘成茎叶图,求样本的平均数及方差并进行比较分析;

(Ⅲ)已知本考场的所有考生中,恰有人两科成绩均为一等奖,在至少一科成绩为一等奖的考生中,随机抽取人进行访谈,求两人两科成绩均为一等奖的概率.

查看答案和解析>>

同步练习册答案