精英家教网 > 高中数学 > 题目详情
9.已知定义在R上的函数f(x)满足f(x+2)-f(x)=0,当x∈(0,2]时,f(x)=2x,则f(2016)=4.

分析 由题意可得函数为周期为2的周期函数,可得f(2016)=f(2),代值计算可得.

解答 解:∵定义在R上的函数f(x)满足f(x+2)-f(x)=0,
∴f(x+2)=f(x)即函数f(x)为周期为2的周期函数,
又∵当x∈(0,2]时,f(x)=2x
∴f(2016)=f(2)=22=4,
故答案为:4.

点评 本题考查函数的周期性,涉及指数的运算,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知集合M={x|$\frac{1}{2-x}$>0},N={1,2,3,4},则∁RM∩N=(  )
A.{1,2,3,4}B.{2,3,4}C.{1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合P={x|1<x≤2},Q={x|x2-2x≥0},若U=R,则P∪∁UQ=(  )
A.[0,2]B.(0,2]C.(1,2]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是(  )

(注:结余=收入-支出)
A.收入最高值与收入最低值的比是3:1
B.结余最高的月份是7月
C.1至2月份的收入的变化率与4至5月份的收入的变化率相同
D.前6个月的平均收入为40万元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某班倡议假期每位学生至少阅读一本名著,为了解学生的阅读情况,对该班所有学生进行了调查.调查结果如表:
阅读名著的本数12345
男生人数31213
女生人数13312
(Ⅰ)试根据上述数据,求这个班级女生阅读名著的平均本数;
(Ⅱ)若从阅读5本名著的学生中任选2人交流读书心得,求选到男生和女生各1人的概率;
(Ⅲ)试判断该班男生阅读名著本数的方差${s_1}^2$与女生阅读名著本数的方差${s_2}^2$的大小
(只需写出结论).(注:方差${s^2}=\frac{1}{n}[{({x_1}-\bar x)^2}+{({x_2}-\bar x)^2}+…+{({x_n}-\bar x)^2}]$,其中$\overline x$为x1x2,…xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在等比数列{an}中,${a_1}+{a_2}=\frac{1}{2},{a_5}+{a_6}=8,{a_n}>0$,则a3+a4=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,已知圆柱的轴截面是一个正方形ABCD,圆柱的全面积为6πcm2,求
(1)直线AC与底面所成的角;
(2)圆柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.植物园拟建一个多边形苗圃,苗圃的一边紧靠着长度大于30m的围墙.现有两种方案:
方案①多边形为直角三角形AEB(∠AEB=90°),如图1所示,其中AE+EB=30m;
方案②多边形为等腰梯形AEFB(AB>EF),如图2所示,其中AE=EF=BF=10m.
请你分别求出两种方案中苗圃的最大面积,并从中确定使苗圃面积最大的方案.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x),对于实数t,若存在a>0,b>0,满足:?x∈[t-a,t+b],使得|f(x)-f(t)|≤2,则记a+b的最大值为H(t).
(1)当f(x)=2x时,H(0)=2;
(2)当f(x)=x2且t∈[1,2]时,函数H(t)的值域为[2$\sqrt{3}$,2$\sqrt{6}$]..

查看答案和解析>>

同步练习册答案