精英家教网 > 高中数学 > 题目详情
19.已知集合M={x|$\frac{1}{2-x}$>0},N={1,2,3,4},则∁RM∩N=(  )
A.{1,2,3,4}B.{2,3,4}C.{1}D.

分析 求出集合的等价条件,根据集合的基本运算进行求解即可.

解答 解:M={x|$\frac{1}{2-x}$>0}={x|2-x>0}={x|x<2},
RM={x|x≥2},
则∁RM∩N={2,3,4},
故选:B.

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知等差数列{an}的前n项和Sn满足S3=0,S5=5,则an=(  )
A.2-nB.n-2C.-2-nD.n+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了A,B两个问题,规定:被抽签抽到的答题同学,答对问题A可获得100分,答对问题B可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对A,B问题的概率分别为$\frac{1}{2},\frac{1}{4}$.
(Ⅰ)记甲先回答问题A再回答问题B得分为随机变量ξ,求ξ的分布列和数学期望;
(Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.观察下列等式:
$\frac{{1}^{2}}{1×3}$=$\frac{1}{3}$,
$\frac{{1}^{2}}{1×3}$+$\frac{{2}^{2}}{3×5}$=$\frac{3}{5}$,
$\frac{{1}^{2}}{1×3}$+$\frac{{2}^{2}}{3×5}$+$\frac{{3}^{2}}{5×7}$=$\frac{6}{7}$,
$\frac{{1}^{2}}{1×3}$+$\frac{{2}^{2}}{3×5}$+$\frac{{3}^{2}}{5×7}$+$\frac{{4}^{2}}{7×9}$=$\frac{10}{9}$.

根据以上等式,可猜想出第n个等式为$\frac{{1}^{2}}{1×3}$+$\frac{{2}^{2}}{3×5}$+$\frac{{3}^{2}}{5×7}$+…+$\frac{{n}^{2}}{(2n-1)(2n+1)}$=$\frac{\frac{n(n+1)}{2}}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2acos2x+bsinxcosx-$\frac{\sqrt{3}}{2}$,且f(0)=$\frac{\sqrt{3}}{2}$,f($\frac{π}{4}$)=$\frac{1}{2}$.
(1)求f(x)的最小正周期;
(2)求最小正实数m,使函数f(x)的图象向左平移m个单位长度所对应的函数是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.将8个珠子(4个黑珠子和4个白珠子)排成一行,从左边第一小珠开始向右数珠子,无论数几个珠子,黑珠子的个数总不少于白珠子个数的概率为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若数列{an}满足:a1=1,an+1=$\frac{{a}_{n}+λ}{{a}_{n}+1}$,(n∈N*,λ>0).
(1)若数列{an}单调递减,求λ的取值范围;
(2)若λ=4,①求证:数列{|an-2|}单调递减;
②求证:1-($\frac{2}{3}$)n≤$\frac{1}{{a}_{1}+2}$$+\frac{1}{{a}_{2}+2}$+…+$\frac{1}{{a}_{n}+2}$≤$\frac{n}{3}$(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.我国延迟退休年龄将借鉴国外经验,拟对不同群体采取差别措施,并以“小步慢走”的方式实施.现对某市工薪阶层关于“延迟退休年龄”的态度进行调查,随机抽调查50人,他们月收入的频数分布及对“延迟退休年龄”反对人数如下表:
月收入(元)[1500,2500)[2500,3500)[3500,4500)[4500,5500)[5500,6500)[6500,7500)
频数510141164
反对人数4811621
(1)由以上统计数据估算月收入低于5500的调查对象中,持反对态度的概率;
(2)若参加此次调查的人中,有9人为统计局工作人员,现在要从这9人中,随机选出2人统计调查结果,求其中a,b两人至少有1人入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知定义在R上的函数f(x)满足f(x+2)-f(x)=0,当x∈(0,2]时,f(x)=2x,则f(2016)=4.

查看答案和解析>>

同步练习册答案