分析 观察已知中的等式:分析出等式两边分母和分子中各项的变化规律,可得答案.
解答 解:观察已知中的等式:
$\frac{{1}^{2}}{1×3}$=$\frac{1}{3}$,
$\frac{{1}^{2}}{1×3}$+$\frac{{2}^{2}}{3×5}$=$\frac{3}{5}$,
$\frac{{1}^{2}}{1×3}$+$\frac{{2}^{2}}{3×5}$+$\frac{{3}^{2}}{5×7}$=$\frac{6}{7}$,
$\frac{{1}^{2}}{1×3}$+$\frac{{2}^{2}}{3×5}$+$\frac{{3}^{2}}{5×7}$+$\frac{{4}^{2}}{7×9}$=$\frac{10}{9}$.
…
归纳可得:等式左边有n个分式,
分母的第一项为1,3,5,…,2n-1,
分母的第二项为3,5,7,…,2n+1,
分子为:12,22,32,…,n2,
等式右边的分母为:2n+1,分子为:1+2+3+…+n=$\frac{n(n+1)}{2}$,
故第n个等式为:$\frac{{1}^{2}}{1×3}$+$\frac{{2}^{2}}{3×5}$+$\frac{{3}^{2}}{5×7}$+…+$\frac{{n}^{2}}{(2n-1)(2n+1)}$=$\frac{\frac{n(n+1)}{2}}{2n+1}$.
故答案为:$\frac{{1}^{2}}{1×3}$+$\frac{{2}^{2}}{3×5}$+$\frac{{3}^{2}}{5×7}$+…+$\frac{{n}^{2}}{(2n-1)(2n+1)}$=$\frac{\frac{n(n+1)}{2}}{2n+1}$
点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
科目:高中数学 来源: 题型:选择题
| 优秀 | 非优秀 | 总计 | |
| 男生 | 40 | 20 | 60 |
| 女生 | 20 | 30 | 50 |
| 总计 | 60 | 50 | 110 |
| P(K2≥k) | 0.500 | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 0.455 | 2.706 | 3.841 | 6.635 | 10.828 |
| A. | 90% | B. | 95% | C. | 99% | D. | 99.9% |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,4) | B. | (-4,0) | C. | [0,4) | D. | [0,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2,3,4} | B. | {2,3,4} | C. | {1} | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 收入最高值与收入最低值的比是3:1 | |
| B. | 结余最高的月份是7月 | |
| C. | 1至2月份的收入的变化率与4至5月份的收入的变化率相同 | |
| D. | 前6个月的平均收入为40万元 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com