精英家教网 > 高中数学 > 题目详情
2.如图,长方体ABCD-A1B1C1D1中,AB=AD=1,点P为DD1的中点.
(1)求证:直线BD1∥平面PAC;
(2)求证:平面PAC⊥平面BDD1

分析 (1)设AC和BD交于点O,连PO,则PO∥BD1,由此能证明直线BD1∥平面PAC.
(2)推导出AC⊥BD,DD1⊥AC,由此能证明平面PAC⊥平面BDD1

解答 证明:(1)设AC和BD交于点O,连PO,
由P,O分别是DD1,BD的中点,故PO∥BD1
因为PO?平面PAC,BD1?平面PAC,
所以直线BD1∥平面PAC
(2)长方体ABCD-A1B1C1D1中,AB=AD=1,
底面ABCD是正方形,则AC⊥BD
又DD1⊥面ABCD,则DD1⊥AC,
所以AC⊥面BDD1,则平面PAC⊥平面BDD1

点评 本题考查线面平行的证明,考查面面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.执行如图的程序框图(N∈N*),那么输出的p是(  )
A.$A_{N+3}^{N+3}$B.$A_{N+2}^{N+2}$C.$A_{N+1}^{N+1}$D.$A_N^N$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设复数z满足$\frac{1-z}{1+z}$=i,则z的虚部为(  )
A.-2B.0C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了A,B两个问题,规定:被抽签抽到的答题同学,答对问题A可获得100分,答对问题B可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对A,B问题的概率分别为$\frac{1}{2},\frac{1}{4}$.
(Ⅰ)记甲先回答问题A再回答问题B得分为随机变量ξ,求ξ的分布列和数学期望;
(Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),A,B是椭圆与x轴的两个交点,M为椭圆C的上顶点,设直线MA的斜率为k1,直线MB的斜率为k2,k1k2=-$\frac{2}{3}$
(Ⅰ)求椭圆C的离心率;
(Ⅱ)设直线l与x轴交于点D(-$\sqrt{3}$,0),交椭圆于P、Q两点,且满足$\overrightarrow{DP}$=3$\overrightarrow{QD}$,当△OPQ的面积最大时,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.观察下列等式:
$\frac{{1}^{2}}{1×3}$=$\frac{1}{3}$,
$\frac{{1}^{2}}{1×3}$+$\frac{{2}^{2}}{3×5}$=$\frac{3}{5}$,
$\frac{{1}^{2}}{1×3}$+$\frac{{2}^{2}}{3×5}$+$\frac{{3}^{2}}{5×7}$=$\frac{6}{7}$,
$\frac{{1}^{2}}{1×3}$+$\frac{{2}^{2}}{3×5}$+$\frac{{3}^{2}}{5×7}$+$\frac{{4}^{2}}{7×9}$=$\frac{10}{9}$.

根据以上等式,可猜想出第n个等式为$\frac{{1}^{2}}{1×3}$+$\frac{{2}^{2}}{3×5}$+$\frac{{3}^{2}}{5×7}$+…+$\frac{{n}^{2}}{(2n-1)(2n+1)}$=$\frac{\frac{n(n+1)}{2}}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2acos2x+bsinxcosx-$\frac{\sqrt{3}}{2}$,且f(0)=$\frac{\sqrt{3}}{2}$,f($\frac{π}{4}$)=$\frac{1}{2}$.
(1)求f(x)的最小正周期;
(2)求最小正实数m,使函数f(x)的图象向左平移m个单位长度所对应的函数是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若数列{an}满足:a1=1,an+1=$\frac{{a}_{n}+λ}{{a}_{n}+1}$,(n∈N*,λ>0).
(1)若数列{an}单调递减,求λ的取值范围;
(2)若λ=4,①求证:数列{|an-2|}单调递减;
②求证:1-($\frac{2}{3}$)n≤$\frac{1}{{a}_{1}+2}$$+\frac{1}{{a}_{2}+2}$+…+$\frac{1}{{a}_{n}+2}$≤$\frac{n}{3}$(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}{f(x-2),x>1}\\{{2}^{2{x}^{2}-1},x≤1}\end{array}\right.$,则f(3)=2;当x<0时,不等式f(x)<2的解集为(-1,0).

查看答案和解析>>

同步练习册答案