精英家教网 > 高中数学 > 题目详情
13.设复数z满足$\frac{1-z}{1+z}$=i,则z的虚部为(  )
A.-2B.0C.-1D.1

分析 设z=a+bi,a,b∈R,根据复数的运算法则,得到$\left\{\begin{array}{l}{1-a=-b}\\{-b=1+a}\end{array}\right.$,解得即可.

解答 解:设z=a+bi,a,b∈R,
∵$\frac{1-z}{1+z}$=i,
∴1-z=i+zi,
∴1-a-bi=i+ai-b,
∴$\left\{\begin{array}{l}{1-a=-b}\\{-b=1+a}\end{array}\right.$,
∴a=0,b=-1,
故选:C.

点评 本题考查了复数的运算和复数的概念,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx-(1+a)x2-x.
(1)讨论 函数f(x)的单调性;
(2)当a<1时,证明:对任意的x∈(0,+∞),有f(x)<-$\frac{lnx}{x}$-(1+a)x2-a+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若直角坐标平面内两点P,Q满足条件:①P、Q都在函数y=f(x)的图象上;②P、Q关于原点对称,则对称点(P,Q)是函数y=f(x)的一个“伙伴点组”(点对(P,Q)与(Q,P)看作同一个“伙伴点组”).则下列函数中,恰有两个“伙伴点组”的函数是②③(填空写所有正确选项的序号)
①y=$\left\{\begin{array}{l}{{x}^{3},x>0}\\{-x-1,x<0}\end{array}\right.$;②y=$\left\{\begin{array}{l}{\frac{1}{2}x-1,x>0}\\{-ln|x|,x<0}\end{array}\right.$;③y=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{-{x}^{2}-4x,x<0}\end{array}\right.$;④y=$\left\{\begin{array}{l}{3x+\frac{1}{2},x>0}\\{{e}^{-x},x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.甲乙两人约定9:00到10:00间在某处会面,并约定先到者应等候另一人一刻钟,这时即可离去,则两人能会面的概率为$\frac{7}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在区间[0,3]上随机取一个数x,则事件“-1≤log${\;}_{\frac{1}{3}}$(x+$\frac{1}{2}$)≤1”发生的概率为(  )
A.$\frac{5}{6}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在[0,π]上随机取一个数x,则事件“2sin$\frac{x}{2}$cos$\frac{x}{2}$+cosx≥$\frac{\sqrt{6}}{2}$”发生的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\frac{{t•{3^x}-1}}{{{3^x}+1}}({t∈R})$是奇函数.
(1)求t的值;
(2)求f(x)的反函数f-1(x);
(3)对于任意的0<m<2,解不等式:${f^{-1}}(x)>{log_3}\frac{1+x}{m}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,长方体ABCD-A1B1C1D1中,AB=AD=1,点P为DD1的中点.
(1)求证:直线BD1∥平面PAC;
(2)求证:平面PAC⊥平面BDD1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知sinα+cosα=-$\sqrt{2}$,则tanα=(  )
A.1B.-2+$\sqrt{3}$C.-2-$\sqrt{3}$D.2±$\sqrt{3}$

查看答案和解析>>

同步练习册答案