精英家教网 > 高中数学 > 题目详情
8.在区间[0,3]上随机取一个数x,则事件“-1≤log${\;}_{\frac{1}{3}}$(x+$\frac{1}{2}$)≤1”发生的概率为(  )
A.$\frac{5}{6}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{6}$

分析 根据对数不等式的解法求出不等式的等价条件,根据几何概型的概率公式进行计算即可.

解答 解:由-1≤log${\;}_{\frac{1}{3}}$(x+$\frac{1}{2}$)≤1得$\frac{1}{3}$≤x+$\frac{1}{2}$≤3,
即-$\frac{1}{6}$≤x≤$\frac{5}{2}$,
∵0≤x≤3,
∴0≤x≤$\frac{5}{2}$,
则对应的概率P=$\frac{\frac{5}{2}-0}{3-0}$=$\frac{5}{6}$,
故选:A.

点评 本题主要考查几何概型的概率的计算,根据对数的运算法则求出不等式的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知sinα•cosβ=1,那么sin(α+β)等于(  )
A.0B.-1C.±1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.f(x)是定义在(0,+∞)上单调函数,且对?x∈(0,+∞),都有f(f(x)-lnx)=e+1,则方程f(x)-f′(x)=e的实数解所在的区间是(  )
A.(0,$\frac{1}{e}$)B.($\frac{1}{e}$,1)C.(1,e)D.(e,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图所示的程序框图,输出结果中s=(  )
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{3}{4}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,三棱锥P-ABC中,PA=PC,AB=BC,E,F分别是PA,AB的中点.
(Ⅰ)求证:EF∥平面PBC;
(Ⅱ)求证:EF⊥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设复数z满足$\frac{1-z}{1+z}$=i,则z的虚部为(  )
A.-2B.0C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=x2+mx+n2,g(x)=x2+(m+2)x+n2+m+1,其中n∈R,若对任意的n,t∈R,f(t)和g(t)至少有一个为非负值,则实数m的最大值是(  )
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),A,B是椭圆与x轴的两个交点,M为椭圆C的上顶点,设直线MA的斜率为k1,直线MB的斜率为k2,k1k2=-$\frac{2}{3}$
(Ⅰ)求椭圆C的离心率;
(Ⅱ)设直线l与x轴交于点D(-$\sqrt{3}$,0),交椭圆于P、Q两点,且满足$\overrightarrow{DP}$=3$\overrightarrow{QD}$,当△OPQ的面积最大时,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy内,动点P到定点F(-1,0)的距离与P到定直线x=-4的距离之比为$\frac{1}{2}$.
(1)求动点P的轨迹C的方程;
(2)设点A、B是轨迹C上两个动点,直线OA、OB与轨迹C的另一交点分别为A1、B1,且直线OA、OB的斜率之积等于$-\frac{3}{4}$,问四边形ABA1B1的面积S是否为定值?请说明理由.

查看答案和解析>>

同步练习册答案