精英家教网 > 高中数学 > 题目详情
9.已知等差数列{an}的前n项和Sn满足S3=0,S5=5,则an=(  )
A.2-nB.n-2C.-2-nD.n+2

分析 由已知利用等差数列的前n项和公式列出方程组,求出首项和公差,由此能求出an

解答 解:∵等差数列{an}的前n项和Sn满足S3=0,S5=5,
∴$\left\{\begin{array}{l}{{S}_{3}=3{a}_{1}+\frac{3×2}{2}d=0}\\{{S}_{5}=5{a}_{1}+\frac{5×4}{2}d=5}\end{array}\right.$,
解得a1=-1,d=1,
∴an=-1+(n-1)×1=n-2.
故选:B.

点评 本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在△ABC中,已知tanA=$\frac{cosB-cosC}{sinC-sinB}$,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线x2-my2=1的离心率为3,则其渐近线与圆(x-3)2+y2=7的位置关系为(  )
A.相交B.相离C.相切D.无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.为了增强环保意识,某校从男生中随机制取了60人,从女生中随机制取了50人参加环保知识测试,统计数据如下表所示:
优秀非优秀总计
男生402060
女生203050
总计6050110
附:K2=$\frac{(a+b+c+d)(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.5000.1000.0500.0100.001
k0.4552.7063.8416.63510.828
则有(  )的把握认为环保知识是否优秀与性别有关.
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若直角坐标平面内两点P,Q满足条件:①P、Q都在函数y=f(x)的图象上;②P、Q关于原点对称,则对称点(P,Q)是函数y=f(x)的一个“伙伴点组”(点对(P,Q)与(Q,P)看作同一个“伙伴点组”).则下列函数中,恰有两个“伙伴点组”的函数是②③(填空写所有正确选项的序号)
①y=$\left\{\begin{array}{l}{{x}^{3},x>0}\\{-x-1,x<0}\end{array}\right.$;②y=$\left\{\begin{array}{l}{\frac{1}{2}x-1,x>0}\\{-ln|x|,x<0}\end{array}\right.$;③y=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{-{x}^{2}-4x,x<0}\end{array}\right.$;④y=$\left\{\begin{array}{l}{3x+\frac{1}{2},x>0}\\{{e}^{-x},x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\sqrt{3}$sin$\frac{π}{2}$xcos$\frac{π}{2}$x+cos2$\frac{π}{2}$x-$\frac{1}{2}$(-1≤x≤1),g(x)是定义域为[-1,1]的偶函数,且当x∈[0,1]时,g(x)=f(x).
(1)求函数f(x)的单调区间;
(2)若方程g(x)=m恰有四个不相等实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.甲乙两人约定9:00到10:00间在某处会面,并约定先到者应等候另一人一刻钟,这时即可离去,则两人能会面的概率为$\frac{7}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在[0,π]上随机取一个数x,则事件“2sin$\frac{x}{2}$cos$\frac{x}{2}$+cosx≥$\frac{\sqrt{6}}{2}$”发生的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M={x|$\frac{1}{2-x}$>0},N={1,2,3,4},则∁RM∩N=(  )
A.{1,2,3,4}B.{2,3,4}C.{1}D.

查看答案和解析>>

同步练习册答案