精英家教网 > 高中数学 > 题目详情
4.已知f(x)是定义在R上的函数,对于任意x,y∈R,都有f(x+y)=f(x-y)+2f(y)cosx,且f(1)=1,则f(2016π)=0.

分析 利用赋值法判断函数的奇偶性和周期性,将条件进行转化求解即可.

解答 解:令x=y=0得f(0)=f(0)+2f(0)cos0,即f(0)=0,
令x=0,则f(y)=f(-y)+2f(y)cos0=f(-y)+2f(y),
即f(-y)=-f(y),
则函数f(x)为奇函数,令x=$\frac{π}{2}$,
得f($\frac{π}{2}$+y)=f($\frac{π}{2}$-y)+2f(y)cos$\frac{π}{2}$=f($\frac{π}{2}$-y),
则f($\frac{π}{2}$+y)=f($\frac{π}{2}$-y)=-f(y-$\frac{π}{2}$).
即f(y+π)=-f(y),
即f(y+2π)=-f(y+π)=f(y),
即函数f(x)的周期是2π,
则f(2016π)=f(0)=0,
故答案为:0.

点评 本题主要考查函数值的计算,根据图象函数关系,判断函数的奇偶性和周期性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知在△ABC中,设点O是△ABC的外心.求证:$\overrightarrow{AO}•\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{A{B}^{2}}$,$\overrightarrow{AO}$•$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{A{C}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为6的样本,请从随机数表的倒数第5行(如表,且表中下一行接在上一行右边)第10列开始,向右读取,直到取足样本,则抽取样本的号码是01,47,20,28,17,02
95 33 95 22 00 18 74 72 00 18 38 79
58 69 32 81 76 80 26 92 82 80 84 25 39.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数f(x)=$\left\{\begin{array}{l}{|2x-6|,x≥0}\\{3x+6,x<0}\end{array}\right.$,若互不相等的实数x1,x2,x3满足f(x1)=f(x2)=f(x3),则x1+x2+x3的取值范围是(  )
A.[4,6]B.(4,6)C.[-1,3]D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x),g(x)满足下列条件:(1)f(-1)=-1,f(0)=0,f(1)=1;(2)对任意实数x1,x2都有f(x1)f(x2)+g(x1)g(x2)=g(x1-x2).则当n>2,n∈N*时,2[f(x)]n+2[g(x)]n的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2}+x+1,x≤1}\\{5x-2,x>1}\end{array}}\right.$,若方程f(x)=m有两个不相等的实数根x1、x2,且x1+x2<-1,则实数m的取值范围为(3,13).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=xln(e2x+1)-x2+1,f(a)=2,则f(-a)的值为(  )
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一只小蜜蜂在一个棱长为3的正方体玻璃容器内随机飞行,若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于1,则就有可能撞到玻璃上面不安全,若始终保持与正方体玻璃容器6个表面的距离均大于1,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是$\frac{1}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z满足z(1-$\sqrt{3}$i)=4(i为虚数单位),则z=(  )
A.-2-2$\sqrt{3}$iB.1+$\sqrt{3}$iC.-1-$\sqrt{3}$iD.1-$\sqrt{3}$i

查看答案和解析>>

同步练习册答案