精英家教网 > 高中数学 > 题目详情
13.推理与证明是数学的一般思考方式,也是学数学、做数学的基本功.请选择你认为合适的证明方法,完成下面的问题.
已知a,b,c∈R,a+b+c>0,ab+bc+ca>0,abc>0.求证:a,b,c,全为正数.

分析 本题是一个全部性问题,要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰.于是考虑采用反证法.假设a,b,c不全是正数,这时需要逐个讨论a,b,c不是正数的情形.但注意到条件的特点(任意交换a,b,c的位置不改变命题的条件),我们只要讨论其中一个数(例如a),其他两个数(例如b,c)与这种情形类似.

解答 证明:假设a,b,c是不全为正的实数,由于abc>0,
则它们只能是两负一正,不妨设a<0,b<0,c>0.…(3分)
又∵ab+bc+ca>0,∴a(b+c)+bc>0,且bc<0,
∴a(b+c)>0.①…(7分)
又∵a<0,∴b+c<0.∴a+b+c<0…(10分)
这与a+b+c>0相矛盾.
故假设不成立,原结论成立,即a,b,c均为正实数.…(12分)

点评 当一个命题的结论是以“至多”“至少”“唯一”或以否定形式出现时,宜用反证法来证.反证法关键是在正确的推理下得出矛盾,矛盾可以是①与已知条件矛盾,②与假设矛盾,③与定义、公理、定理矛盾,④与事实矛盾等方面.反证法常常是解决某些“疑难”问题的有力工具,是数学证明中的一件有力武器.推理与证明是数学的一般思考方式,也是学数学、做数学的基本功.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K2≈3.918,经查对临界值表知P(K2≥3.841)≈0.05.
对此,四名同学做出了以下的判断:
p:有95%的把握认为“这种血清能起到预防感冒的作用”
q:若某人未使用该血清,那么他在一年中有95%的可能性得感冒
r:这种血清预防感冒的有效率为95%
s:这种血清预防感冒的有效率为5%
则上述结论中,正确结论的序号是p,r..(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=ex-mx+1(x≥0)的图象为曲线C,若曲线C存在与直线y=ex垂直的切线,则实数m的取值范围为($\frac{1}{e}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C方程:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),M(x0,y0)是椭圆C上任意一点,F(c,0)是椭圆的右焦点.
(1)若椭圆的离心率为e,证明|MF|=a-ex0
(2)已知不过焦点F的直线l与圆x2+y2=b2相切于点Q,并与椭圆C交于A,B两点,且A,B两点都在y轴的右侧,若a=2,求△ABF的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)某工厂加工某种零件有三道工序:粗加工、返修加工和精加工.每道工序完成时,都要对产品进行检验.粗加工的合格品进入精加工,不合格进入返修加工;返修加工的合格品进入精加工,不合格品作为废品
处理;精加工的合格品为成品,不合格品为废品.用流程图表示这个零件的加工过程.
(2)设计一个结构图,表示《数学选修1-2》第二章“推理与证明”的知识结构.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.过点(1,2)且与圆x2+y2=1相切的直线方程为3x-4y+5=0或x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.命题p:实数x满足x2-4ax+3a2<0(其中a>0),命题q:2<x≤3
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若q是p的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=log4[(4x+1)4kx](k∈R)为偶函数.
(1)求k的值;
(2)设g(x)=log4(a•2x+1),若函数f(x)与g(x)图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知y=$\frac{1}{3}{x^3}+b{x^2}$+(b+6)x+3在R上存在三个单调区间,则b的取值范围是(  )
A.b≤-2或b≥3B.-2≤b≤3C.-2<b<3D.b<-2或b>3

查看答案和解析>>

同步练习册答案