精英家教网 > 高中数学 > 题目详情
18.过点(1,2)且与圆x2+y2=1相切的直线方程为3x-4y+5=0或x=1.

分析 设出切线方程,利用圆心到直线的距离等于半径求出方程,当直线的斜率不存在时验证即可.

解答 解:设切线方程为y-2=k(x-1),即kx-y+2-k=0.
由于直线与圆相切,故圆心到直线的距离等于半径,即$\frac{|2-k|}{\sqrt{{k}^{2}+1}}$=1,解得k=$\frac{3}{4}$,
其方程为3x-4y+5=0.
又,当斜率不存在时,切线方程为x=1.
故答案为:3x-4y+5=0或x=1.

点评 本题考查圆的切线方程的求法,注意斜率是否存在是解题的关键,也是易错点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.椭圆过点(2,$\sqrt{3}$),($\sqrt{7}$,$\frac{3}{2}$).
(1)求椭圆的标准方程;
(2)设F1,F2是椭圆的焦点,椭圆在第一象限的部分上有一点P满足∠F1PF2=60°,求三角形F1PF2的面积和点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=ax(a>0且a≠1)和函数g(x)=sin$\frac{π}{2}$x,若f(x)的反函数为h(x),且h(x)与g(x)两图象只有3个交点,则a的取值范围是(  )
A.$(\frac{1}{5},1)∪(1,\frac{9}{2})$B.$(0,\frac{1}{7})∪(1,\frac{9}{2})$C.$(\frac{1}{7},\frac{1}{3})∪(5,9)$D.$(\frac{1}{7},\frac{1}{2})∪(3,9)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=ex-e(e为自然常数),则该函数曲线在x=1处的切线方程是(  )
A.ex-y-e=0B.ex-y+1=0C.ex-y=0D.ex-y+1-e2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.推理与证明是数学的一般思考方式,也是学数学、做数学的基本功.请选择你认为合适的证明方法,完成下面的问题.
已知a,b,c∈R,a+b+c>0,ab+bc+ca>0,abc>0.求证:a,b,c,全为正数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线l1:ax+2y+3=0与l2:x-(a-1)y+a2-1=0,则“a=2”是“直线l1与l2垂直”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2cos2x+$\sqrt{3}$sin2x,g(x)=$\frac{1}{2}f(x+\frac{5π}{12})+ax+b$,其中a,b为非零实常数.
(1)如何由f(x)的图象得到函数y=2sin2x的图象?
(2)若f(α)=1-$\sqrt{3}$,$α∈[-\frac{π}{3},\frac{π}{3}]$,求α的值.
(3)若x∈R,讨论g(x)的奇偶性(只写结论,不用证明).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知非零向量$\overrightarrow a,\overrightarrow b$的夹角为60°,$\overrightarrow c=\overrightarrow a-k\overrightarrow b(k∈R)$,则$\frac{|\overrightarrow a|}{|\overrightarrow c|}$的最大值为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为了了解“中国好声音”在大众中的熟知度,随机对15~65岁的人群抽样了n人有关回答问题,统计结果如下图表.
组号分组回答
正确
的人数
回答正确
的人数占本
组的频率
第1组[15,25)a0.5
第2组[25,35)18x
第3组[35,45)b0.9
第4组[45,55)90.36
第5组[55,65]3y
(Ⅰ)分别求出a,b,x,y的值;
(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.

查看答案和解析>>

同步练习册答案