精英家教网 > 高中数学 > 题目详情
8.为了了解“中国好声音”在大众中的熟知度,随机对15~65岁的人群抽样了n人有关回答问题,统计结果如下图表.
组号分组回答
正确
的人数
回答正确
的人数占本
组的频率
第1组[15,25)a0.5
第2组[25,35)18x
第3组[35,45)b0.9
第4组[45,55)90.36
第5组[55,65]3y
(Ⅰ)分别求出a,b,x,y的值;
(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.

分析 (I)由频率表中第4组数据可知,第4组的频数为25,再结合频率分布直方图求得n,a,b,x,y的值;
(II)因为第2,3,4组回答正确的人数共有54人,抽取比例为$\frac{6}{54}$,根据抽取比例计算第2,3,4组每组应抽取的人数;
列出从6人中随机抽取2人的所有可能的结果,共15基本事件,其中恰好没有第3组人共3个基本事件,利用古典概型概率公式计算.

解答 解:(Ⅰ)由频率表中第4组数据可知,第4组总人数为$\frac{9}{0.36}=25$,
再结合频率分布直方图可知n=$\frac{25}{0.025×10}=100$,
∴a=100×0.01×10×0.5=5,b=100×0.03×10×0.9=27,$x=\frac{18}{20}=0.9,y=\frac{3}{15}=0.2$…(4分)
(Ⅱ)因为第2,3,4组回答正确的人数共有54人,
所以利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:$\frac{18}{54}×6=2$人;第3组:$\frac{27}{54}×6=3$人;第4组:$\frac{9}{54}×6=1$人…(8分)
设第2组2人为:A1,A2;第3组3人为:B1,B2,B3;第4组1人为:C1
则从6人中随机抽取2人的所有可能的结果为:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),
(A2,B1),(A2,B2),(A2,B3),(A2,C1),(B1,B2),(B1,B3),(B1,C1),(B2,B3),(B2,C1),(B3,C1)共15个基本事件,其中恰好没有第3组人共3个基本事件,…(10分)
∴所抽取的人中恰好没有第3组人的概率是:$P=\frac{3}{15}=\frac{1}{5}$.…(12分)

点评 本题考查了频率分布表与频率分布直方图,考查了古典概型的概率计算,解题的关键是读懂频率分布直方图.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.过点(1,2)且与圆x2+y2=1相切的直线方程为3x-4y+5=0或x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知过函数f(x)=x3+ax2+1的图象上一点B(1,b)的切线的斜率为-3.
(1)求a、b的值;
(2)求m的取值范围,使不等式f(x)≤m-1987对于x∈[-1,4]恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=2,|$\overrightarrow{OP}$|=(1-t)|$\overrightarrow{OA}$|,|$\overrightarrow{OQ}$|=t|$\overrightarrow{OB}$|,0≤t≤1,|$\overrightarrow{PQ}$|在t0时取得最小值,当0<t0<$\frac{1}{5}$时,求$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知y=$\frac{1}{3}{x^3}+b{x^2}$+(b+6)x+3在R上存在三个单调区间,则b的取值范围是(  )
A.b≤-2或b≥3B.-2≤b≤3C.-2<b<3D.b<-2或b>3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知M(3,-2),N(-5,-1),若$\overrightarrow{MP}=\frac{1}{2}\overrightarrow{MN}$,则P点的坐标为(  )
A.(-8,1)B.(8,-1)C.$(-1,-\frac{3}{2})$D.$(1,\frac{3}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线y=t与函数f(x)=$\sqrt{2x}(x>0),g(x)={e^x}$的图象分别交于A,B两点,则线段AB的长度的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.(xn)′=nxn-1;   
(sinx)′=cosx;
(cosx)′=-sinx;
(lnx)′=$\frac{1}{x}$;  
(ex)′=ex

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知正项数列{an}的前n项和为Sn,且Sn是an2和an的等差中项.
(1)求{an}的通项公式;
(2)求证:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$<2.

查看答案和解析>>

同步练习册答案