精英家教网 > 高中数学 > 题目详情
16.已知|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=2,|$\overrightarrow{OP}$|=(1-t)|$\overrightarrow{OA}$|,|$\overrightarrow{OQ}$|=t|$\overrightarrow{OB}$|,0≤t≤1,|$\overrightarrow{PQ}$|在t0时取得最小值,当0<t0<$\frac{1}{5}$时,求$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角范围.

分析 由向量的运算可得|$\overrightarrow{PQ}$|2=(5+4cosθ)t2+(-2-4cosθ)t+1,由二次函数可得0<$\frac{1+2cosθ}{5+4cosθ}$<$\frac{1}{5}$,解不等式可得cosθ的范围,可得夹角的范围.

解答 解:设$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为θ,
由题意可得 $\overrightarrow{OA}$•$\overrightarrow{OB}$=2×1×cosθ=2cosθ,
$\overrightarrow{PQ}$=$\overrightarrow{OQ}$-$\overrightarrow{OP}$=t$\overrightarrow{OB}$-(1-t)$\overrightarrow{OA}$,
∴|$\overrightarrow{PQ}$|2=$\overrightarrow{PQ}$2=t2$\overrightarrow{OB}$2+(1-t)2$\overrightarrow{OA}$2-2t(1-t)$\overrightarrow{OA}$•$\overrightarrow{OB}$=(1-t)2+4t2-4t(1-t)cosθ,
=(5+4cosθ)t2+(-2-4cosθ)t+1
由二次函数知当上式取最小值时,t0=$\frac{1+2cosθ}{5+4cosθ}$,
由题意可得0<$\frac{1+2cosθ}{5+4cosθ}$<$\frac{1}{5}$,
解得-$\frac{1}{2}$<cosθ<0,
∴$\frac{π}{2}$<θ<$\frac{2π}{3}$,
故$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角范围为:($\frac{π}{2}$,$\frac{2π}{3}$).

点评 本题考查数量积与向量的夹角,涉及二次函数和三角函数的运算,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=ex-e(e为自然常数),则该函数曲线在x=1处的切线方程是(  )
A.ex-y-e=0B.ex-y+1=0C.ex-y=0D.ex-y+1-e2=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知非零向量$\overrightarrow a,\overrightarrow b$的夹角为60°,$\overrightarrow c=\overrightarrow a-k\overrightarrow b(k∈R)$,则$\frac{|\overrightarrow a|}{|\overrightarrow c|}$的最大值为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.复数m2-1+(m+1)i是纯虚数,则实数m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=xex,记f0(x)=f′(x),f1(x)=f0′(x),…,fn(x)=f′n-1(x)且x2>x1,对于下列命题:
①函数f(x)存在平行于x轴的切线;   
②$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0;
③f′2015(x)=xex+2017ex; 
④f(x1)+x2>f(x2)+x1
其中正确的命题序号是①③(写出所有满足题目条件的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使得f(x)在区间[a,b]上的值域为[$\frac{a}{n},\frac{b}{n}$](n∈N*),则称g(x)为“n倍缩函数”,若函数f(x)=log3(3x+t)为“3倍缩函数”,则t的取值范围为(  )
A.(0,$\frac{1}{3}$)B.(0,$\frac{2\sqrt{3}}{9}$)C.(0,$\frac{\sqrt{3}}{3}$)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为了了解“中国好声音”在大众中的熟知度,随机对15~65岁的人群抽样了n人有关回答问题,统计结果如下图表.
组号分组回答
正确
的人数
回答正确
的人数占本
组的频率
第1组[15,25)a0.5
第2组[25,35)18x
第3组[35,45)b0.9
第4组[45,55)90.36
第5组[55,65]3y
(Ⅰ)分别求出a,b,x,y的值;
(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,首项为a1,且2,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=(log2an)×(log2an+1),求数列{$\frac{1}{{b}_{n}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.过三点A(-6,0),B(0,2)和原点O(0,0)的圆的标准方程为为(x+3)2+(y-1)2=10.

查看答案和解析>>

同步练习册答案