分析 (1)由2,an,Sn成等差数列,可得Sn=2an-2.利用递推式与等比数列的通项公式可得an.
(2)由bn=(log2an)×(log2an+1)=n(n+1),可得$\frac{1}{{b}_{n}}$=$\frac{1}{n}-\frac{1}{n+1}$.利用“裂项求和”即可得出.
解答 解:(1)∵2,an,Sn成等差数列,∴2an=2+Sn,即Sn=2an-2.
当n=1时,a1=2a1-2,解得a1=2;
当n≥2时,an=Sn-Sn-1=2an-2-(2an-1-2),化为an=2an-1.
∴数列{an}是等比数列,首项为2,公比为2,
∴${a}_{n}={2}^{n}$.
(2)∵bn=(log2an)×(log2an+1)=n(n+1),
∴$\frac{1}{{b}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴数列{$\frac{1}{{b}_{n}}$}的前n项和=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
点评 本题考查了递推式、等比数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-8,1) | B. | (8,-1) | C. | $(-1,-\frac{3}{2})$ | D. | $(1,\frac{3}{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 6 | C. | 无解 | D. | 无数多个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | |a|>|b|-|c| | B. | |a|<|b|+|c| | C. | a>c-b | D. | a<b+c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com