精英家教网 > 高中数学 > 题目详情
13.已知M(3,-2),N(-5,-1),若$\overrightarrow{MP}=\frac{1}{2}\overrightarrow{MN}$,则P点的坐标为(  )
A.(-8,1)B.(8,-1)C.$(-1,-\frac{3}{2})$D.$(1,\frac{3}{2})$

分析 设出点P(x,y),利用向量$\overrightarrow{MP}$=$\frac{1}{2}$$\overrightarrow{MN}$,列出方程组,求出x、y的值.

解答 解:设点P(x,y),
则$\overrightarrow{MP}$=(x-3,y+2),
$\overrightarrow{MN}$=(-5-3,-1+2)=(-8,1),
又∵$\overrightarrow{MP}$=$\frac{1}{2}$$\overrightarrow{MN}$,
∴(x-3,y+2)=(-4,$\frac{1}{2}$),
∴$\left\{\begin{array}{l}{x-3=-4}\\{y+2=\frac{1}{2}}\end{array}\right.$;
解得x=-1,y=-$\frac{3}{2}$,
∴P(-1,-$\frac{3}{2}$).
故选:C.

点评 本题考查了平面向量的应用问题,也考查了解方程组的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.直线l1:ax+2y+3=0与l2:x-(a-1)y+a2-1=0,则“a=2”是“直线l1与l2垂直”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.复数m2-1+(m+1)i是纯虚数,则实数m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使得f(x)在区间[a,b]上的值域为[$\frac{a}{n},\frac{b}{n}$](n∈N*),则称g(x)为“n倍缩函数”,若函数f(x)=log3(3x+t)为“3倍缩函数”,则t的取值范围为(  )
A.(0,$\frac{1}{3}$)B.(0,$\frac{2\sqrt{3}}{9}$)C.(0,$\frac{\sqrt{3}}{3}$)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为了了解“中国好声音”在大众中的熟知度,随机对15~65岁的人群抽样了n人有关回答问题,统计结果如下图表.
组号分组回答
正确
的人数
回答正确
的人数占本
组的频率
第1组[15,25)a0.5
第2组[25,35)18x
第3组[35,45)b0.9
第4组[45,55)90.36
第5组[55,65]3y
(Ⅰ)分别求出a,b,x,y的值;
(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知关于实数x的两个命题:p:$\frac{x+1}{2-x}$<0,q:x+a<0,且命题p是q的必要不充分条件,则实数a的取值范围是a≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,首项为a1,且2,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=(log2an)×(log2an+1),求数列{$\frac{1}{{b}_{n}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若实数a=2-$\sqrt{2}$,试求a10-2C101a9+22C102a8-…+210的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)满足f(x-3)=$\frac{x}{{x}^{2}+1}$.
(1)求函数的解析式;
(2)求函数f(x)的值域.

查看答案和解析>>

同步练习册答案