精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)满足f(x-3)=$\frac{x}{{x}^{2}+1}$.
(1)求函数的解析式;
(2)求函数f(x)的值域.

分析 (1)利用换元法求出函数f(x)的解析式即可;(2)先求出函数的导数,得到函数的单调区间,从而求出函数的值域.

解答 解:(1)令z=x-3,则x=z+3,
∴f(z)=$\frac{z+3}{{(z+3)}^{2}+1}$,
∴f(x)=$\frac{x+3}{{x}^{2}+6x+10}$;
(2)f′(x)=-$\frac{(x+2)(x+4)}{{x}^{2}+6x+10}$,
令f′(x)>0,解得:-4<x<-2,
令f′(x)<0,解得:x>-2或x<-4,
∴f(x)在(-∞,-4),(-2,+∞)递减,在(-4,-2)递增,
又∵f(x)=$\frac{x+3}{{x}^{2}+6x+10}$=$\frac{1+\frac{3}{x}}{x+6+\frac{10}{x}}$,
当x→+∞时,f(x)→0,
当x→-∞时,f(x)→0,
∴函数f(x)的大致图象如图所示:

∴f(x)最大值=f(x)极大值=f(-2)=$\frac{1}{2}$,
f(x)最小值=f(x)极小值=f(-4)=-$\frac{1}{2}$,
∴函数f(x)的值域是:[-$\frac{1}{2}$,$\frac{1}{2}$].

点评 本题考察了函数的解析式问题,考察函数的值域问题,本题是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知M(3,-2),N(-5,-1),若$\overrightarrow{MP}=\frac{1}{2}\overrightarrow{MN}$,则P点的坐标为(  )
A.(-8,1)B.(8,-1)C.$(-1,-\frac{3}{2})$D.$(1,\frac{3}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若实数a,b,c满足|a-c|<|b|,则下列不等式中成立的是(  )
A.|a|>|b|-|c|B.|a|<|b|+|c|C.a>c-bD.a<b+c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=$\frac{1}{3}$x3-2f′(0)ex+3x-1,则f(0)=(  )
A.-3B.3C.-1D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知正项数列{an}的前n项和为Sn,且Sn是an2和an的等差中项.
(1)求{an}的通项公式;
(2)求证:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C1、C2的极坐标方程分别为ρ=4cosθ、ρsin(θ-$\frac{π}{4}$)=$\sqrt{10}$
(Ⅰ)求曲线C1、C2的直角坐标方程;
(Ⅱ)将曲线C1横坐标缩短为原来的$\frac{1}{2}$,再向左平移1个单位,得到曲线C3,求曲线C3上的点到曲线C2上的点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设$\overrightarrow{a}$=(1+cos2α,sin2α),$\overrightarrow{b}$=(1-cos2β,sin2β)$\overrightarrow{c}$=(1,0),其中α∈(0,$\frac{π}{2}$),β∈($\frac{π}{2}$,π)
(1)求向量$\overrightarrow{a}$和$\overrightarrow{b}$的模
(2)若$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为θ1,$\overrightarrow{b}$与$\overrightarrow{c}$的夹角为θ2,且θ12=$\frac{π}{6}$,求α-β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图所示,P、Q为△ABC内的两点,且$\overrightarrow{AP}$=$\frac{2}{5}$$\overrightarrow{AB}$+$\frac{1}{5}$$\overrightarrow{AC}$,$\overrightarrow{AQ}$=$\frac{5}{3}$$\overrightarrow{AP}$-$\frac{1}{12}$$\overrightarrow{AC}$,则△ABP的面积与△ABQ的面积之比为(  )
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{4}{5}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若tanα=$\frac{4}{3}$,且α为第三象限角,则sinα=(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案