精英家教网 > 高中数学 > 题目详情
20.如图,在△ABC中,∠BAC=90°,PA⊥面ABC,AB=AC,D是BC的中点,则图中直角三角形的个数是8.

分析 由∠BAC=90°,PA⊥平面ABC,能推导出AB⊥PA,PA⊥DA,PA⊥AC,由AB=AC,D是BC的中点,可得AD⊥BC,PD⊥BC,由此能求出四面体P-ABC中有多少个直角三角形.

解答 解:在Rt△ABC中,∠BAC=90°,
PA⊥平面ABC,
∴AB⊥PA,PA⊥DA,PA⊥AC,
∵AB=AC,D是BC的中点,
∴AD⊥BC,
∴BP=CP,可得PD⊥BC,
∴图中直角三角形有△PAC,△PAB,△PAD,△ABC.△ABD,△ADC,△BPD,△DPC,8个.
故答案为:8.

点评 本题考查直线与平面垂直的性质的应用,解题时要认真审题,仔细解答,注意等价转化思想的灵活运用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设复数z满足(1+i)z=2,其中i为虚数单位,则在复平面内,z对应的点的坐标是(  )
A.($\sqrt{2}$,-$\sqrt{2}$)B.(1,-1)C.(1,-i)D.(2,-2i)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=x2-lnx.则零点个数为0个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知一个圆柱的侧面积是2π,体积为π,则其全面积是4π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知a>1,求证:$\sqrt{a+1}$+$\sqrt{a-1}$<2$\sqrt{a}$.
(2)求证:a2+b2≥ab+a+b-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2+3x|x-c|,其中c∈R.
(1)当$c=\frac{1}{3}$时,是否存在区间[a,b],使得函数f(x)的定义域与值域均为[a,b]?若存在,求出所有可能的区间[a,b],若不存在请说明理由.
(2)若c>0,函数f(x)在区间(a,b)上既有最大值又有最小值,请分别求出a,b的取值范围(用c表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上、下焦点分别为F1、F2,点P为双曲线上一点,且sin∠PF1F2=$\frac{3}{5}$,若线段PF1的垂直平分线恰好经过F2,则双曲线的离心率是(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{16}{5}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.现有3名老师,8名男生和5名女生共16人,若需1名老师和1名学生参加,则不同的选法种数为(  )
A.39种B.24种C.15种D.16种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a>0,b>0.若$\sqrt{3}$是3a与3b的等比中项,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为(  )
A.4B.6C.2$\sqrt{3}$D.2$\root{4}{3}$

查看答案和解析>>

同步练习册答案