分析 先求函数f(x)=x2-lnx的定义域,再求导可判断函数的单调性,从而可得f(x)≥f($\frac{\sqrt{2}}{2}$)=$\frac{1}{2}$-ln$\frac{\sqrt{2}}{2}$>0;从而确定答案.
解答 解:函数f(x)=x2-lnx的定义域为(0,+∞),
f′(x)=2x-$\frac{1}{x}$=$\frac{2{x}^{2}-1}{x}$;
故x∈(0,$\frac{\sqrt{2}}{2}$)时,f′(x)<0;
x∈($\frac{\sqrt{2}}{2}$,+∞)时,f′(x)>0;
故f(x)≥f($\frac{\sqrt{2}}{2}$)=$\frac{1}{2}$-ln$\frac{\sqrt{2}}{2}$>0;
故函数f(x)=x2-lnx没有零点;
故答案为:0.
点评 本题考查了导数的应用及函数的零点的判断,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-$\frac{2}{3}$ e | B. | 1+$\frac{2}{3}$e | C. | $\frac{2}{3}$e | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com