精英家教网 > 高中数学 > 题目详情
1.已知在函数f(x)=ex2+aex图象上点(1,f(1))处切线的斜率为e,则${∫}_{0}^{1}$f(x)dx=(  )
A.1-$\frac{2}{3}$ eB.1+$\frac{2}{3}$eC.$\frac{2}{3}$eD.1

分析 求导函数,令x=1,即可求得函数的图象在点(1,f(1))处的切线的斜率,可得a,再利用定积分求${∫}_{0}^{1}$f(x)dx.

解答 解:∵f(x)=ex2+aex
∴f′(x)=2ex+aex
令x=1,则2e+ae=e,
∴a=-1,
∴${∫}_{0}^{1}$f(x)dx=${∫}_{0}^{1}$(ex2-ex)dx=($\frac{1}{3}e{x}^{3}-{e}^{x}$)${|}_{0}^{1}$=1-$\frac{2}{3}e$.
故选:A.

点评 本题考查导数知识的运用,考查导数的几何意义,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=x2-lnx.则零点个数为0个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上、下焦点分别为F1、F2,点P为双曲线上一点,且sin∠PF1F2=$\frac{3}{5}$,若线段PF1的垂直平分线恰好经过F2,则双曲线的离心率是(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{16}{5}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.现有3名老师,8名男生和5名女生共16人,若需1名老师和1名学生参加,则不同的选法种数为(  )
A.39种B.24种C.15种D.16种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=x2-1,对任意$x∈[-\frac{3}{2},-\frac{3}{4}]$,$f(\frac{x}{m})-4{m^2}f(x)≤f(x-1)+4f(m)$恒成立,则实数m的取值范围是(-∞,-$\frac{\sqrt{3}}{2}$]∪[$\frac{\sqrt{3}}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$\overrightarrow{a}=(λ,2)\overrightarrow{b}=(-3,5)$,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为直角,则λ的值是$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.要证:a2+b2-1-a2b2≤0,只要证明(  )
A.2ab-1-a2b2≤0B.${a^2}+{b^2}-1-\frac{{{a^4}+{b^4}}}{2}≤0$
C.$\frac{{{{(a+b)}^2}}}{2}-1-{a^2}{b^2}≤0$D.(a2-1)(b2-1)≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a>0,b>0.若$\sqrt{3}$是3a与3b的等比中项,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为(  )
A.4B.6C.2$\sqrt{3}$D.2$\root{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.用火柴棒摆“金鱼”,如图所示:

按照上面的规律,第⑪个“金鱼”图需要火柴棒的根数是68.

查看答案和解析>>

同步练习册答案