精英家教网 > 高中数学 > 题目详情
13.要证:a2+b2-1-a2b2≤0,只要证明(  )
A.2ab-1-a2b2≤0B.${a^2}+{b^2}-1-\frac{{{a^4}+{b^4}}}{2}≤0$
C.$\frac{{{{(a+b)}^2}}}{2}-1-{a^2}{b^2}≤0$D.(a2-1)(b2-1)≥0

分析 将左边因式分解,即可得出结论.

解答 解:要证:a2+b2-1-a2b2≤0,只要证明(a2-1)(1-b2)≤0,
只要证明(a2-1)(b2-1)≥0.
故选:D.

点评 综合法(由因导果)证明不等式、分析法(执果索因)证明不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.等差数列{an}中,a1+a2=3,a3+a4=7,则a5+a6=(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\vec a$=(1,2),$\vec b$=(k+1,3),若$\vec a$与$\vec b$的夹角为锐角,则实数k的取值范围为(  )
A.(-7,+∞)B.(-7,$\frac{1}{2}}$)∪(${\frac{1}{2}$,+∞)C.[-7,+∞)D.[-7,$\frac{1}{2}}$)∪(${\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知在函数f(x)=ex2+aex图象上点(1,f(1))处切线的斜率为e,则${∫}_{0}^{1}$f(x)dx=(  )
A.1-$\frac{2}{3}$ eB.1+$\frac{2}{3}$eC.$\frac{2}{3}$eD.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=cos$(2ωx+\frac{π}{3})$+$\frac{1}{2}$ (ω>0)的最小正周期是π.
(1)求函数f(x)的单调递增区间和对称中心;
(2)若A为钝角三角形ABC的最小内角,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知抛物线C1:x2=2py的焦点在抛物线C2:y=$\frac{1}{2}$x2+$\frac{1}{4}$上.
(Ⅰ)求抛物线C1的方程及其准线方程;
(Ⅱ)过抛物线C1上的动点P作抛物线C2的两条切线PM、PN,切点为M、N.若PM、PN的斜率乘积为m,且m∈[$\frac{3}{2}$,$\frac{7}{2}$],求|OP|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}是各项均为正数有穷数列,数列{bn}满足kbk=a1+a2+…+ak(k=1,2,…,n)
(1)若数列{bn}的通项公式bn=n,求数列{an}的通项公式;
(2)①若数列{an}为递增数列,试判断数列{bn}是否为递增数列?如果是,请加以证明;如果不是,说明理由;
②若数列{bn}为递增数列,试判断数列{an}是否为递增数列?如果是,请加以证明;如果不是,说明理由;
(3)设数列{Cn}、{Dn}满足:Cn=(a1-b12+(a2-b22+…+(an-bn2,Dn=(a1-bn2+(a2-bn2+…+(an-bn2,求证:Cn≤Dn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,圆O内的两条弦AB、CD相交于P,PA=PB=4,PD=4PC.若O到AB的距离为4,则O到CD的距离为(  )
A.7B.$\sqrt{39}$C.$\sqrt{7}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线x-$\sqrt{3}$y-1=0与圆C:(x-1)2+(y-2)2=4交于A,B两点,则弦AB的长为(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案