精英家教网 > 高中数学 > 题目详情
4.已知向量$\vec a$=(1,2),$\vec b$=(k+1,3),若$\vec a$与$\vec b$的夹角为锐角,则实数k的取值范围为(  )
A.(-7,+∞)B.(-7,$\frac{1}{2}}$)∪(${\frac{1}{2}$,+∞)C.[-7,+∞)D.[-7,$\frac{1}{2}}$)∪(${\frac{1}{2}$,+∞)

分析 利用向量夹角为锐角,得到数量积大于0并且排除同向的情况.

解答 解:因为向量$\vec a$=(1,2),$\vec b$=(k+1,3),若$\vec a$与$\vec b$的夹角为锐角,
所以$\overrightarrow{a}•\overrightarrow{b}$>0并且2(k+1)≠3,即k+1+6>0且2(k+1)≠3,交点k>-7且k≠$\frac{1}{2}$;
故选:B.

点评 本题考查了向量的数量积公式的运用;解答本题的关键是注意数量积夹角为锐角与数量积大于0不等价.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.一位母亲记录了她儿子3周岁到9周岁的身高,建立了她儿子身高y与年龄x的回归模型$\widehat{y}$=73.93+7.19x,她用这个模型预测她儿子10周岁时的身高,则下面的叙述正确的是(  )
A.她儿子10周岁时的身高一定是145.83cm
B.她儿子10周岁时的身高在145.83cm以上
C.她儿子10周岁时的身高在145.83cm左右
D.她儿子10周岁时的身高在145.83cm以下

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知a>1,求证:$\sqrt{a+1}$+$\sqrt{a-1}$<2$\sqrt{a}$.
(2)求证:a2+b2≥ab+a+b-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上、下焦点分别为F1、F2,点P为双曲线上一点,且sin∠PF1F2=$\frac{3}{5}$,若线段PF1的垂直平分线恰好经过F2,则双曲线的离心率是(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{16}{5}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知袋中装有标号为1,2,3的三个小球,从中任取一个小球(取后放回),连取三次,则取到的小球的最大标号为3的概率为(  )
A.$\frac{2}{3}$B.$\frac{19}{27}$C.$\frac{20}{27}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.现有3名老师,8名男生和5名女生共16人,若需1名老师和1名学生参加,则不同的选法种数为(  )
A.39种B.24种C.15种D.16种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=x2-1,对任意$x∈[-\frac{3}{2},-\frac{3}{4}]$,$f(\frac{x}{m})-4{m^2}f(x)≤f(x-1)+4f(m)$恒成立,则实数m的取值范围是(-∞,-$\frac{\sqrt{3}}{2}$]∪[$\frac{\sqrt{3}}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.要证:a2+b2-1-a2b2≤0,只要证明(  )
A.2ab-1-a2b2≤0B.${a^2}+{b^2}-1-\frac{{{a^4}+{b^4}}}{2}≤0$
C.$\frac{{{{(a+b)}^2}}}{2}-1-{a^2}{b^2}≤0$D.(a2-1)(b2-1)≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=BC=AC=AA1=4,点F在CC1上,且C1F=3FC,E是BC的中点.
(1)求证:AE⊥平面BCC1B1
(2)求四棱锥A-B1C1FE的体积;
(3)证明:B1E⊥AF.

查看答案和解析>>

同步练习册答案