分析 (Ⅰ)由条件利用韦达定理可知tanA+tanB和tanA,tanB的值,可得得tan(A+B)=$\frac{tanA+tanB}{1-tanAtanB}$ 的值,从而求得A+B的值.
(Ⅱ)由三角形内角和求得C=$\frac{3π}{4}$,由α∈[0,π],可得 α-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],再根据sin(α-$\frac{π}{6}$)=sinC求得sin(α-$\frac{π}{6}$)的值,可得α的值.
解答 解:(Ⅰ)方程x2+p(x+1)+1=0,即 x2+px+p+1=0.
由条件可知tanA+tanB=-p,tanAtanB=p+1.
所以tan(A+B)=$\frac{tanA+tanB}{1-tanAtanB}$=$\frac{-p}{1-(p+1)}$=1,∴A+B=$\frac{π}{4}$.
(Ⅱ)在△ABC中,由 A+B=$\frac{π}{4}$,可得C=$\frac{3π}{4}$.
因为α∈[0,π],所以,α-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],故由sin(α-$\frac{π}{6}$)=sinC,
可得sin(α-$\frac{π}{6}$)=$\frac{\sqrt{2}}{2}$,∴α-$\frac{π}{6}$=$\frac{π}{4}$,或α-$\frac{π}{6}$=$\frac{3π}{4}$,
∴α=$\frac{5π}{12}$ 或α=$\frac{11π}{12}$.
点评 本题主要考查韦达定理、两角和的正切公式、正弦函数的定义域和值域,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\sqrt{2}$,-$\sqrt{2}$) | B. | (1,-1) | C. | (1,-i) | D. | (2,-2i) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$,-$\frac{1}{2}$,-1 | B. | $\frac{5}{2}$,$\frac{1}{2}$,1 | C. | -$\frac{5}{2}$,$\frac{1}{2}$,1 | D. | $\frac{5}{2}$,-$\frac{1}{2}$,1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{5}$ | B. | $\frac{5}{2}π$ | C. | -5π | D. | 5π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 她儿子10周岁时的身高一定是145.83cm | |
| B. | 她儿子10周岁时的身高在145.83cm以上 | |
| C. | 她儿子10周岁时的身高在145.83cm左右 | |
| D. | 她儿子10周岁时的身高在145.83cm以下 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{16}{5}$ | D. | $\frac{6}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com