精英家教网 > 高中数学 > 题目详情
17.若$\overrightarrow a=\overrightarrow{e_1}+\overrightarrow{e_2}+\overrightarrow{e_3}$,$\overrightarrow b=\overrightarrow{e_1}-\overrightarrow{e_2}-\overrightarrow{e_3}$,$\overrightarrow c=\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow d=\overrightarrow{e_1}+2\overrightarrow{e_2}+3\overrightarrow{e_3}$($\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}$为空间的一个基底)且$\overrightarrow{d}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$+z$\overrightarrow{c}$,则x,y,z分别为(  )
A.$\frac{5}{2}$,-$\frac{1}{2}$,-1B.$\frac{5}{2}$,$\frac{1}{2}$,1C.-$\frac{5}{2}$,$\frac{1}{2}$,1D.$\frac{5}{2}$,-$\frac{1}{2}$,1

分析 直接利用向量的运算法则求解即可.

解答 解:$\overrightarrow a=\overrightarrow{e_1}+\overrightarrow{e_2}+\overrightarrow{e_3}$,$\overrightarrow b=\overrightarrow{e_1}-\overrightarrow{e_2}-\overrightarrow{e_3}$,$\overrightarrow c=\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow d=\overrightarrow{e_1}+2\overrightarrow{e_2}+3\overrightarrow{e_3}$($\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}$为空间的一个基底)且$\overrightarrow{d}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$+z$\overrightarrow{c}$,
可得$\overrightarrow{{e}_{1}}+2\overrightarrow{{e}_{2}}+3\overrightarrow{{e}_{3}}$=$x(\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}}+\overrightarrow{{e}_{3})+y(\overrightarrow{{e}_{1}}-\overrightarrow{{e}_{2}}-\overrightarrow{{e}_{3}})}$+z$(\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2})}$,
∴$\left\{\begin{array}{l}1=x+y+z\\ 2=x-y+z\\ 3=x-y\end{array}\right.$,解得:x=$\frac{5}{2}$,y=-$\frac{1}{2}$,z=-1.
故选:A.

点评 本题考查平面向量的基本定理的应用,相等向量的充要条件的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.实数x,y满足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x≥1}\\{y≥1}\end{array}\right.$,则z=2x-y的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在数列{an}中,a1=1,an+1-an=2,则a20的值为39.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个总体中的1000个个体编号为0,1,2,…,999,并以此将其分为10个小组,组号为1,2,3,…,10,要用系统抽样方法抽取一个容量为10的样本,规定如果在第1组抽取的号码为x,那么依次错位地得到后面各组的号码,即第k组中抽取的号码的后两位数为x+33k的后两位数,若x=57,则第7组抽取的号码为(  )
A.657B.757C.688D.788

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$=(2,4),$\overrightarrow{b}$=(x,2),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x的值是(  )
A.4B.1C.-1D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,已知tanA,tanB是x的方程x2+p(x+1)+1=0的两个根.
(Ⅰ)求A+B;
(Ⅱ)若α∈[0,π],且满足sin(α-$\frac{π}{6}$)=sinC,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.cos(-15°)的值为(  )
A.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$B.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$C.$\frac{{\sqrt{2}+\sqrt{6}}}{4}$D.-$\frac{{\sqrt{2}+\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知△ABC中,∠ABC=45°,AB=$\sqrt{2}$,BC=3,则sin∠BAC=$\frac{{3\sqrt{10}}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设x,y∈R,2x2+3y2=6,求x2+y2+8x的最大值和最小值.

查看答案和解析>>

同步练习册答案