【题目】某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:
X | 1 | 2 | 3 | 4 |
Y | 51 | 48 | 45 | 42 |
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(2)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望.
【答案】(1)
(2)所求Y的分布列为
Y | 51 | 48 | 45 | 42 |
P |
因此,所求年收获量Y的期望为E(Y)=46
【解析】(1)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12.从三角形地块的内部和边界上分别随机选取一株的不同结果有 =36(种),选取的两株作物恰好“相近”的不同结果有3+3+2=8(种).
故从三角形地块的内部和边界上分别随机选取一株作物,它们恰好“相近”的概率为=.
(2)先求从所种作物中随机选取的一株作物的年收获量Y的分布列.
因为P(Y=51)=P(X=1),P(Y=48)=P(X=2),
P(Y=45)=P(X=3),P(Y=42)=P(X=4),
所以只需求出P(X=k)(k=1,2,3,4)即可.
记nk为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3.
由P(X=k)=,得
P (X=1)=,P(X=2)=,P(X=3)==,
P(X=4)==.
故所求Y的分布列为
Y | 51 | 48 | 45 | 42 |
P |
因此,所求年收获量Y的期望为
E(Y)=51×+48×+45×+42×=46.
科目:高中数学 来源: 题型:
【题目】某地区有云龙山,户部山,子房山河九里山等四大名山,一位游客来该地区游览,已知该游客游览云龙山的概率为,游览户部山、子房山和九里山的概率都是,且该游客是否游览这四座山相互独立.
(1)求该游客至少游览一座山的概率;
(2)用随机变量表示该游客游览的山数,求的概率分布和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)≤0,对任意正数a、b,若a<b,则必有( )
A.af(b)≤bf(a)
B.bf(a)≤af(b)
C.af(a)≤f(b)
D.bf(b)≤f(a)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程与曲线的直角坐标方程;
(2)为曲线上任一点,过点作曲线的切线(为切点),求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+bx﹣ (a>0),g(x)=4x+ + ,且y=f(x+ )为偶函数.设集合A={x|t﹣1≤x≤t+1}.
(1)若t=﹣ ,记f(x)在A上的最大值与最小值分别为M,N,求M﹣N;
(2)若对任意的实数t,总存在x1 , x2∈A,使得|f(x1)﹣f(x2)|≥g(x)对x∈[0,1]恒成立,试求a的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为2的正方体ABCD﹣A1B1C1D1中,点P是正方体棱上的一点(不包括棱的端点),满足|PB|+|PD1|= 的点P的个数为;若满足|PB|+|PD1|=m的点P的个数为6,则m的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com