【题目】在某批次的某种灯泡中,随机地抽取
个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于
天的灯泡是优等品,寿命小于
天的灯泡是次品,其余的灯泡是正品.
寿命(天) | 频数 | 频率 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
合计 |
|
|
(1)根据频率分布表中的数据,写出
、
的值;
(2)某人从灯泡样品中随机地购买了
个,如果这
个灯泡的等级情况恰好与按三个等级分层抽样所得的结果相同,求
的最小值;
(3)某人从这个批次的灯泡中随机地购买了
个进行使用,若以上述频率作为概率,用
表示此人所购买的灯泡中次品的个数,求
的分布列和数学期望.
【答案】(1)
,
;(2)
;(3)分布列见解析,
.
【解析】
(1)根据频数、频率和样本容量之间的关系可得出
、
的值;
(2)由频率分布表知按分层抽样法,购买灯泡数
个,由此能求出
的最小值;
(3)
的所有取值为
、
、
、
,分别求出相对应的概率,由此能求出
的分布列和数学期望.
(1)由题意可得
,
;
(2)由表可知:灯泡样品中优等品有
个,正品有
个,次品有
个,
优等品、正品和次品的比例为
,
按分层抽样法,购买灯泡数为
个,
因此,
的最小值为
;
(3)
的所有取值为
、
、
、
,
由题意,购买一个灯泡,且这个灯泡是次品的概率为
,
从本批次灯泡中购买
个,可看成
次独立重复试验,则
.
,
,
,
.
所以,随机变量
的分布列如下表所示:
|
|
|
|
|
|
|
|
|
|
因此,随机变量
的数学期望为
.
科目:高中数学 来源: 题型:
【题目】已知曲线C的参数方程是
(φ为参数,a>0),直线l的参数方程是
(t为参数),曲线C与直线l有一个公共点在x轴上,以坐标原点为极点,x轴的正半轴为极轴建立坐标系.
(1)求曲线C的普通方程;
(2)若点A(ρ1,θ),B(ρ2,θ+
),C(ρ3,θ+
)在曲线C上,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 已知函数f(x)=|x+a|+|x-2|.
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列的定义为:在一个数列中,从第二项起,如果每一项与它的前一项的差都为同一个常数,那么这个数叫做等差数列,这个常数叫做该数列的公差.类比等差数列的定义给出“等和数列”的定义:_____________________________________;已知数列
是等和数列,且
,公和为
,那么
的值为____________.这个数列的前
项和
的计算公式为_____________________________________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为矩形,
,侧面
为等边三角形且垂直于底面
,
是
的中点.
(1)在棱
上取一点
使直线
∥平面
并证明;
(2)在(1)的条件下,当棱
上存在一点
,使得直线
与底面
所成角为
时,求二面角
的余弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
:
,
,
,…,
为1,2,3,…,
的一个排列,若
互不相同,则称数列
具有性质
.
(1)若
,且
,写出具有性质
的所有数列
;
(2)若数列
具有性质
,证明:
;
(3)当
时,分别判断是否存在具有性质
的数列
?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某学校高三年级共1000名男生中随机抽取50人测量身高,据测量,被测学生身高全部介于
到
之间,将测量结果按如下方式分成八组:第一组
,第二组
,…,第八组
.如图是按上述分组方法得到的频率分布直方图的一部分.其中第六组、第七组、第八组人数依次构成等差数列.
![]()
(1)求第六组、第七组的频率,并估计高三年级全体男生身高在
以上(含
)的人数;
(2)学校决定让这五十人在运动会上组成一个高旗队,在这五十人中要选身高在
以上(含
)的两人作为队长,求这两人在同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为了解本市1万名小学生的普通话水平,在全市范围内进行了普通话测试,测试后对每个小学生的普通话测试成绩进行统计,发现总体(这1万名小学生普通话测试成绩)服从正态分布
.
(1)从这1万名小学生中任意抽取1名小学生,求这名小学生的普通话测试成绩在
内的概率;
(2)现在从总体中随机抽取12名小学生的普通话测试成绩,对应的数据如下:50,52,56,62,63,68,65,64,72,80,67,90.从这12个数据中随机选取4个,记
表示大于总体平均分的个数,求
的方差.
参考数据:若
,则
,
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com