【题目】已知等差数列的定义为:在一个数列中,从第二项起,如果每一项与它的前一项的差都为同一个常数,那么这个数叫做等差数列,这个常数叫做该数列的公差.类比等差数列的定义给出“等和数列”的定义:_____________________________________;已知数列是等和数列,且,公和为,那么的值为____________.这个数列的前项和的计算公式为_____________________________________.
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程为ρ=4cosθ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).
(1)求曲线C的直角坐标方程与直线l的普通方程;
(2)设曲线C与直线l相交于P,Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将4本不同的书随机放入如图所示的编号为1,2,3,4的四个抽屉中.
1 | 2 | 3 | 4 |
(Ⅰ)求4本书恰好放在四个不同抽屉中的概率;
(Ⅱ)随机变量表示放在2号抽屉中书的本数,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的方程为:,过点的直线的参数方程为(为参数).
(1)求直线的普通方程与曲线的直角坐标方程;
(2)若直线与曲线交于、两点,求的值,并求定点到两点的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知变量、之间的线性回归方程为,且变量、之间的一-组相关数据如下表所示,则下列说法错误的是( )
A.可以预测,当时,B.
C.变量、之间呈负相关关系D.该回归直线必过点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某批次的某种灯泡中,随机地抽取个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于天的灯泡是优等品,寿命小于天的灯泡是次品,其余的灯泡是正品.
寿命(天) | 频数 | 频率 |
合计 |
(1)根据频率分布表中的数据,写出、的值;
(2)某人从灯泡样品中随机地购买了个,如果这个灯泡的等级情况恰好与按三个等级分层抽样所得的结果相同,求的最小值;
(3)某人从这个批次的灯泡中随机地购买了个进行使用,若以上述频率作为概率,用表示此人所购买的灯泡中次品的个数,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)a2x(k∈R,a>0,e为自然对数的底数),且曲线f(x)在点(1,f(1))处的切线的斜率为e2﹣a2.
(1)求实数k的值,并讨论函数f(x)的单调性;
(2)设函数g(x),若对x1∈(0,+∞),x2∈R,使不等式f(x2)≤g(x1)﹣1成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在坐标原点焦点在x轴上,椭圆C上一点A(2,﹣1)到两焦点距离之和为8.若点B是椭圆C的上顶点,点P,Q是椭圆C上异于点B的任意两点.
(1)求椭圆C的方程;
(2)若BP⊥BQ,且满足32的点D在y轴上,求直线BP的方程;
(3)若直线BP与BQ的斜率乘积为常数λ(λ<0),试判断直线PQ是否经过定点.若经过定点,请求出定点坐标;若不经过定点,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com