精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax2+lnx(x>0).
(I)讨论函数f(x)的单调性;
(II)当a=0时,斜率为k的直线与曲线y=f(x)交于A(x1,y1),B(x2,y2)(x1<x2)两点,求证:数学公式

解:(I)(x>0)
(1)a≥0时,f'(x)>0恒成立,故f(x)在(0,+∞)上单调递增
(2)当a<0时,由,由
考虑到x>0,得f(x)在上单调递增,在上单调递减.
(II)a=0时,,不等式 ,即证(8分)
由于t>1,令g(t)=,所以g(t)>g(1)=1,
即不等式成立,令
即lnt<t-1,所以,不等式1-成立,即得原不等式成立(14分)
分析:(I)先确定函数的定义域然后求导数fˊ(x),讨论a的正负,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,即可求出函数f(x)的单调区间;
(II)欲证,将k用代换,转化成 ,即证,然后利用导数研究研究单调性即可证得.
点评:本题主要考查了不等式的证明,以及利用导数研究函数的单调性等基础知识,考查计算能力和分析问题的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案