精英家教网 > 高中数学 > 题目详情
9.设△ABC的内角A,B,C的对边分别为a,b,c,且满足sinA+sinB=(cosA+cosB)sinC.
(Ⅰ)求证:△ABC为直角三角形;
(Ⅱ)若a+b+c=1+$\sqrt{2}$,求△ABC面积的最大值.

分析 (Ⅰ)由sinA+sinB=(cosA+cosB)sinC,利用正、余弦定理,得a+b=$({\frac{{{b^2}+{c^2}-{a^2}}}{2bc}+\frac{{{c^2}+{a^2}-{b^2}}}{2ca}})$c,化简整理,即可证明:△ABC为直角三角形;
(Ⅱ)利用a+b+c=1+$\sqrt{2}$,a2+b2=c2,根据基本不等式可得1+$\sqrt{2}$=a+b+$\sqrt{{a^2}+{b^2}}$≥2$\sqrt{ab}$+$\sqrt{2ab}$=(2+$\sqrt{2}$)•$\sqrt{ab}$,即可求出△ABC面积的最大值.

解答 (Ⅰ)证明:在△ABC中,因为sinA+sinB=(cosA+cosB)sinC,
所以由正、余弦定理,得a+b=$({\frac{{{b^2}+{c^2}-{a^2}}}{2bc}+\frac{{{c^2}+{a^2}-{b^2}}}{2ca}})$c  …(2分)
化简整理得(a+b)(a2+b2)=(a+b)c2
因为a+b>0,所以a2+b2=c2  …(4分)
故△ABC为直角三角形,且∠C=90°  …(6分)
(Ⅱ)解:因为a+b+c=1+$\sqrt{2}$,a2+b2=c2
所以1+$\sqrt{2}$=a+b+$\sqrt{{a^2}+{b^2}}$≥2$\sqrt{ab}$+$\sqrt{2ab}$=(2+$\sqrt{2}$)•$\sqrt{ab}$
当且仅当a=b时,上式等号成立,所以$\sqrt{ab}$≤$\frac{{\sqrt{2}}}{2}$.…(8分)
故S△ABC=$\frac{1}{2}$ab≤$\frac{1}{2}$×${({\frac{{\sqrt{2}}}{2}})^2}$≤$\frac{1}{4}$…(10分)
即△ABC面积的最大值为$\frac{1}{4}$…(12分)

点评 本题考查的是解三角形,考查正、余弦定理,基本不等式的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在锐角△ABC中,角A,B,C的对边分别是a,b,c,若a=$\sqrt{7}$,b=3,$\sqrt{7}$sinB+sinA=2$\sqrt{3}$,则cosB的值为$\frac{\sqrt{7}}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.为了参加2016年全市“五•四”文艺汇演,某高中从校文艺队160名学生中抽取20名学生参加排练,现采用等距抽取的方法,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126号,则第1组中用抽签的方法确定的号码是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow{a}$=(2,sinθ),$\overrightarrow{b}$=(1,cosθ),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则tanθ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知无穷等比数列{an}的首项a1=18,公比q=-$\frac{1}{2}$,则无穷等比数列{an}各项的和是12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设集合A={1,2,3,5},B={2,3,6},则A∪B={1,2,3,5,6}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.x轴为曲线f(x)=x3+ax+$\frac{1}{4}$的切线,则a=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=Asin(ωx-$\frac{π}{3}$)+h,(A>0,ω>0)的最大值和最小值分别为4和0,且函数图象与x轴相邻两个交点的距离为π;
(1)求f(x)的解析式;
(2)求f(x)的单调递减区间;
(3)求当x∈[$\frac{π}{12}$,$\frac{π}{2}$]时,f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a1,a2,…a9成等差数列,若$\sum_{k=1}^{9}{a}_{k}=0,\sum_{k=1}^{9}{a}_{k}^{2}=15$,且a1<a2,则a9=(  )
A.2B.$\frac{3}{2}$C.1D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案