精英家教网 > 高中数学 > 题目详情
19.在锐角△ABC中,角A,B,C的对边分别是a,b,c,若a=$\sqrt{7}$,b=3,$\sqrt{7}$sinB+sinA=2$\sqrt{3}$,则cosB的值为$\frac{\sqrt{7}}{14}$.

分析 求出三角形的外接圆的直径,利用正弦定理求出B是正弦函数值,然后求解即可.

解答 解:在锐角△ABC中,角A,B,C的对边分别是a,b,c,若a=$\sqrt{7}$,b=3,设外接圆的半径为R,则2R=$\frac{b}{sinB}$,2R=$\frac{a}{sinA}$,代入$\sqrt{7}$sinB+sinA=2$\sqrt{3}$,可得:3$\sqrt{7}$+$\sqrt{7}$=4$\sqrt{3}$R,R=$\frac{\sqrt{7}}{\sqrt{3}}$.
sinB=$\frac{1}{2}×$$\frac{3}{\frac{\sqrt{7}}{\sqrt{3}}}$=$\frac{3\sqrt{21}}{14}$.
cosB=$\sqrt{1-si{n}^{2}B}$=$\frac{\sqrt{7}}{14}$
故答案为:$\frac{\sqrt{7}}{14}$.

点评 本题考查正弦定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.求函数y=2sin(x+$\frac{π}{3}$)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(-2,1)的密度曲线)的点的个数的估计值为(  )
[附:若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=0.6826,
P(μ-2σ<X<μ+2σ)=0.9544,
P(μ-3σ<X<μ+3σ)=0.9974].
A.430B.215C.2718D.1359

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(1+x)2n,g(x)=(1-x)2n.求证:
(1)C2n1+2C2n2+3C2n3+…+2nC2n2n=n22n
(2)(Cn02+(Cn12+(Cn22+…+(Cnn2=C2nn
(3)f(x)+g(x)<4n,其中|x|<1,n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设I={(x,y)|x∈R且y∈R},P,Q均为I的子集,定义Q○P={(x,z)|存在y使(x,y)∈P且(y,z)∈Q},已知X,Y,Z为I的子集,下列正确的是(  )
A.(X∪Y)○Z=(X○Z)∩(Y○Z)B.(X∩Y)○Z=(X○Z)∪(Y○Z)C.(X∪Y)○Z=(X○Z)∪(Y○Z)D.(X∩Y)○Z=(X○Z)∩(Y○Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在(2+$\sqrt{x}$-$\frac{1}{{x}^{2016}}$)10的展开式中,x4项的系数为180(结果用数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在△ABC中,点D在BC边上,∠CAD=$\frac{π}{4}$,cos∠C=$\frac{3}{5}$.
(Ⅰ)求sin∠ADB的值; 
(Ⅱ)若BD=2DC=5,求△ABD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=$\sqrt{3}$sinx•cosx+cos2x
(Ⅰ) 试求函数f(x)的单调递增区间;
(Ⅱ)△ABC的三个角A,B,C的对边分别为a,b,c,且f(C)=$\frac{3}{2}$,求$\frac{\sqrt{3}({c}^{2}+ab+3{b}^{2})}{4{S}_{△ABC}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设△ABC的内角A,B,C的对边分别为a,b,c,且满足sinA+sinB=(cosA+cosB)sinC.
(Ⅰ)求证:△ABC为直角三角形;
(Ⅱ)若a+b+c=1+$\sqrt{2}$,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案