精英家教网 > 高中数学 > 题目详情
5.已知变量x,y满足约束条件$\left\{\begin{array}{l}x-y+2≤0\\ x≥1\\ x+y-7≤0\end{array}\right.$,则2x+y的取值范围是(  )
A.(-∞,5]∪[$\frac{19}{2}$,+∞)B.[5,8]C.[5,$\frac{19}{2}$]D.[8,$\frac{19}{2}$]

分析 作出不等式组对应的平面区域,设z=2x+y,利用z的几何意义即可得到结论.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点B时,直线y=-2x+z的截距最大,此时z最大.
由$\left\{\begin{array}{l}{x-y+2=0}\\{x+y-7=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{5}{2}}\\{y=\frac{9}{2}}\end{array}\right.$,即B($\frac{5}{2}$,$\frac{9}{2}$),
代入目标函数z=2x+y得z=2×$\frac{5}{2}$+$\frac{9}{2}$=$\frac{19}{2}$.
即目标函数z=2x+y的最大值为$\frac{19}{2}$.
当直线y=-2x+z经过点A时,直线y=-2x+z的截距最小,
此时z最小.
由$\left\{\begin{array}{l}{x=1}\\{x-y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),
代入目标函数z=2x+y得z=2×1+3=5.
即目标函数z=2x+y的最小值为5.
目标函数z=2x+y的取值范围是[5,$\frac{19}{2}$],
故选:C.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知集合U=R,P={x|x2-4x-5≤0},Q={x|x≥1},则P∩(∁UQ)(  )
A.{x|-1≤x<5}B.{x|1<x<5}C.{x|1≤x<5}D.{x|-1≤x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.等差数列{an}中,第1项为2,第2项为8,那么它的第3项为(  )
A.-10B.10C.14D.-12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l经过点A(-1,-3),且其倾斜角等于直线x-$\sqrt{3}$y=0的倾斜角的4倍.求直线l的方程并用一般式表示.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数$f(x)=\left\{\begin{array}{l}-1(-2≤x≤0)\\ x-1(0<x≤2)\end{array}\right.$,$g(x)=f(x)-\frac{1}{2}x,x∈[-2,2]$,若$g({log_2}a)+g({log_{\frac{1}{2}}}a)≤2g(\frac{1}{2})$,则实数a的取值范围是(  )
A.$(0,\frac{1}{2}]$B.$[1,\sqrt{2}]$C.$[\frac{1}{2},2]$D.$[\frac{{\sqrt{2}}}{2},\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知幂函数f(x)=xα的图象过点$(2,\frac{1}{2})$,则函数f(x)的值域为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,0)∪(0,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知x2+y2=9的内接三角形ABC中,A点的坐标是(-3,0),重心G的坐标是$(-\frac{1}{2},-1)$,求:
(Ⅰ)直线BC的方程;
(Ⅱ)弦BC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“△OAB的面积为$\frac{1}{2}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)是定义在R上的偶函数,且当x≥0时,f(x)=ln(x+1),则函数f(x)的大致图象为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案