精英家教网 > 高中数学 > 题目详情
1.若用半径为2的半圆卷成一个圆锥,则圆锥的体积为(  )
A.$\sqrt{3}π$B.$\frac{{\sqrt{3}π}}{3}$C.$\frac{{\sqrt{5}π}}{3}$D.$\sqrt{5}π$

分析 求出圆锥的底面半径和高,即可得出圆锥的体积.

解答 解:圆锥的母线长为2,设卷成圆锥的底面半径为r,
则2πr=2π,∴r=1,
∴圆锥的高为h=$\sqrt{4-1}$=$\sqrt{3}$,
∴圆锥的体积为V=$\frac{1}{3}π×1×\sqrt{3}$=$\frac{\sqrt{3}π}{3}$.
故选:B.

点评 本题考查了圆锥的结构特征,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知i是虚数单位,则复数$i+\frac{1}{1-i}$=(  )
A.1+3iB.$\frac{1}{2}+\frac{3}{2}i$C.1-3iD.$\frac{1}{2}-\frac{3}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知O是△ABC所在平面内一点,D为BC边中点,且2$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,那么△ABC面积是△OBD面积的(  )倍.
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.为了解某地区居民用水情况,通过抽样,获得了100位居民每人的月均用水量(单位:吨),将数据按照[0,1],[1,2),…[4,5]分成5组,制成了如图所示的频率分布直方图.
(1)估计这100位居民月均用水量的样本平均数$\overline{x}$和样本方差s2(同一组数据用该区间的中点值作代表,保留1位小数).
(2)根据以上抽样调查数据,能否认为该地区居民每人的月均用水量符合“月均用水量超过3吨的人数不能占全部人数30%”的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(Ⅰ)已知${(2x-1)^{10}}={a_0}+{a_1}(x-1)+{a_2}(x-1{)^2}+…+{a_{10}}{(x-1)^{10}}$,其中ai∈R,i=1,2,…10.
(i)求a0+a1+a2+…+a10
(ii)求a7
(Ⅱ)2017年5月,北京召开“一带一路”国际合作高峰论坛.组委会将甲、乙、丙、丁、戊五名志愿者分配到翻译、导游、礼仪、司机四个不同的岗位,每个岗位至少有一人参加,且五人均能胜任这四个岗位.
(i)若每人不准兼职,则不同的分配方案有几种?
(ii)若甲乙被抽调去别的地方,剩下三人要求每人必兼两职,则不同的分配方案有几种?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)是(0,+∞)上的增函数,若f[f(x)-lnx]=1,则f(e)=(  )
A.2B.1C.0D.e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f′(x)是函数f(x)(x∈R)的导数,且满足xf′(x)-2f(x)>0,若△ABC是锐角三角形,则(  )
A.f(sinA)•sin2B>f(sinB)•sin2AB.f(sinA)•sin2B<f(sinB)•sin2A
C.f(cosA)•sin2B>f(sinB)•cos2AD.f(cosA)•sin2B<f(sinB)•cos2A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.(1-i)(2+i)=(  )
A.1-iB.3-iC.1+3iD.3+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知三角形三个顶点分别是A(-3,0),B(2,-2),C(0,1),求这个三角形三边各自所在直线方程.

查看答案和解析>>

同步练习册答案