精英家教网 > 高中数学 > 题目详情
已知函数f(x)=4cos2x-4
3
sinxcosx-2(x∈R).
(1)求函数f(x)的单调递增区间;
(2)设△ABC的内角A,B,C对应边分别为a、b、c,且c=3,f(C)=-4,若向量
m
=(1,sinA)与向量
.
n
=(1,2sinB)共线,求a、b的值.
考点:三角函数中的恒等变换应用,平面向量数量积的运算,正弦函数的图象
专题:解三角形
分析:(1)利用三角函数中的恒等变换应用可求得f(x)=4cos(2x+
π
3
),利用余弦函数的单调性即可求得函数f(x)的单调递增区间;
(2))f(C)=4cos(2C+
π
3
)=-4,结合题意易求C=
π
3
,再利用正弦定理与余弦定理即可求得a、b的值.
解答: 解:(1)f(x)=4cos2x-4
3
sinxcosx-2=2cos2x-2
3
sin2x
=4cos(2x+
π
3
)…3分
由2kπ+π≤2x+
π
3
≤2kπ+2π,(k∈Z)
解得:kπ+
π
3
≤x≤kπ+
6
,(k∈Z)…5分
∴f(x)的单调递增区间为[kπ+
π
3
,kπ+
6
],(k∈Z)…6分
(2)f(C)=4cos(2C+
π
3
)=-4,而C∈(0,π),所以2C+
π
3
∈(
π
3
3
),
∴2C+
π
3
=π,得C=
π
3
…8分
m
=(1,sinA)与向量
n
=(1,2sinB)共线,∴
sinA
sinB
=2,
由正弦定理得:
a
b
=2①…9分
由余弦定理得:c2=a2+b2-2abcos
π
3
,即a2+b2-ab=9②…11分
由①②解得a=2
3
,b=
3
…12分
点评:本题考查三角函数中的恒等变换应用、平面向量数量积的运算、正弦定理与余弦定理,考查运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,一个圆环O直径为4m,通过铁丝CA1,CA2,CA3,BC(A1,A2,A3是圆上三等分点)悬挂在B处,圆环呈水平状态,并距天花板2m,记四段铁丝总长为y(m).
(1)按下列要求建立函数关系:
(ⅰ)设∠CA1O=θ(rad),将y表示为θ的函数,并写出函数定义域;
(ⅱ)设BC=x(m),将y表示为x的函数,并写出函数定义域;
(2)请你选用(1)中的一个函数关系,求铁丝总长y的最小值.(精确到0.1m,取
2
=1.4)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在体积为
3
的正三棱锥A-BCD中,BD长为2
3
,E为棱BC的中点,求:
(1)异面直线AE与CD所成角的大小(结果用反三角函数值表示);
(2)正三棱锥A-BCD的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex(ax2-2x-2)
(1)若函数f(x)在x=1处取得极值,求a的值;
(2)若a>0,函数f(x)在x∈[1,3]取得最小值为e,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两名运动员在4次训练中的得分情况如下面的茎叶图所示.
(Ⅰ)分别计算甲、乙两名运动员训练得分的平均数和方差,并指出谁的训练成绩更好,为什么?
(Ⅱ)从甲、乙两名运动的训练成绩中各随机抽取1次的得分,分别记为x,y,设ξ=|x-8|+|y-10|.求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某调查公司在某服务区调查七座以下小型汽车在某段高速公路的车速(km/t),办法是按汽车进服务区的先后每间隔50辆抽取一辆的抽样方法抽取40名驾驶员进行询问,将调查结果按[60,65)[65,70)[70,75)[75,80),[80,85)[85,90)分成六段,并得到如图所示的频率分布直方图.
(1)试估计这40辆小型车辆车速的众数和中位数.
(2)若从车速在[60,70)的车辆中任抽取2辆,求抽出的2辆车中至少有一辆的车速在[65,70)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:x-y+1=0和点A(1,0)
(Ⅰ)过点A作直线l的垂线,垂足为B,求点B的坐标;
(Ⅱ)若直线l与x轴的交点为C,将△ABC绕直线l旋转一周,求所得几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<x<1,比较x、
1
x
、x2大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体OABC中,OA,OB,OC两两垂直,且OA=
3
OB=OC=1,给出下列命题:
①存在点D(点O除外),使得四面体DABC仅有3个面是直角三角形;
②存在点D,使得四面体DOBC的4个面都是直角三角形;
③存在唯一的点D,使得四面体DABC是正棱锥(底面是正多边形,且顶点在底面的射影是底面正多边形的中心,这样的棱锥叫做正棱锥);
④存在唯一的点D,使得四面体DABC与四面体OABC的体积相等;
⑤存在无数个点D,使得AD与BC垂直且相等.
其中正确命题的序号是
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

同步练习册答案