18£®ÉèÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$µÄ¼Ð½ÇΪ¦È£¬|$\overrightarrow{a}$|¡Ý1£¬|$\overrightarrow{b}$|¡Ý3£¬ÇÒ|$\overrightarrow{a}$|£¬$\overrightarrow{a}$•$\overrightarrow{b}$£¬|$\overrightarrow{b}$|³ÉµÈ±ÈÊýÁУ¬Ôòcos2¦ÈµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®-$\frac{1}{2}$B£®-$\frac{2}{3}$C£®-$\frac{1}{3}$D£®-$\frac{1}{4}$

·ÖÎö ¸ù¾ÝÈý¸öÊý³ÉµÈ±ÈÊýÁеõ½cos2¦ÈµÄÖµ£¬
ÔÙ¸ù¾Ý|$\overrightarrow{a}$|¡Ý1£¬|$\overrightarrow{b}$|¡Ý3ºÍ¶þ±¶½Ç¹«Ê½Çó³öcos2¦ÈµÄ×î´óÖµ£®

½â´ð ½â£ºÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$µÄ¼Ð½ÇΪ¦È£¬|$\overrightarrow{a}$|¡Ý1£¬|$\overrightarrow{b}$|¡Ý3£¬ÇÒ|$\overrightarrow{a}$|£¬$\overrightarrow{a}$•$\overrightarrow{b}$£¬|$\overrightarrow{b}$|³ÉµÈ±ÈÊýÁУ¬
¡à|$\overrightarrow{a}$|¡Á|$\overrightarrow{b}$|=£¨$\overrightarrow{a}$•$\overrightarrow{b}$£©2£¬
¡àcos2¦È=$\frac{1}{|\overrightarrow{a}|¡Á|\overrightarrow{b}|}$¡Ü$\frac{1}{3}$£¬
¼´$\frac{1+cos2¦È}{2}$¡Ü$\frac{1}{3}$£¬
¡àcos2¦È¡Ü-$\frac{1}{3}$£¬
Ôòcos2¦ÈµÄ×î´óֵΪ-$\frac{1}{3}$£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÒÔ¼°±¶½Ç¹«Ê½µÄÔËÓÃÎÊÌ⣬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑ֪ʵÊýx£¬yÂú×ã·½³Ìx2+y2+2x-2y=0£¬Ôò|x|+|y|µÄ×î´óֵΪ£¨¡¡¡¡£©
A£®2B£®4C£®3$\sqrt{2}$D£®2+$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªÒ»¸ö¼¸ºÎÌåµÄÕýÊÓͼ¡¢²àÊÓͼ¡¢¸©ÊÓͼ¶¼ÊÇÑü³¤Îª1µÄµÈÑüÖ±½ÇÈý½ÇÐΣ¨ÈçͼËùʾ£©£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®1B£®$\frac{1}{2}$C£®$\frac{1}{3}$D£®$\frac{1}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®°ÑÏÂÁвÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì
£¨1£©$\left\{\begin{array}{l}x=2cos¦Õ\\ y=sin¦Õ\end{array}\right.$£¨¦ÕΪ²ÎÊý£©
£¨2£©$\left\{\begin{array}{l}x=3cos¦Õ\\ y=4sin¦Õ\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-\frac{1}{2}+\frac{\sqrt{2}}{2}t}\\{y=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¬ÍÖÔ²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=\sqrt{3}sin¦È}\end{array}\right.$£®ÔÚÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢µÄ¼«×ø±êϵÖУ¬µãAµÄ×ø±êΪ£¨$\frac{\sqrt{2}}{2}$£¬$\frac{3}{4}$¦Ð£©£®
£¨1£©½«µãAµÄ×ø±ê»¯ÎªÖ±½Ç×ø±êϵϵÄ×ø±ê£¬ÍÖÔ²µÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£»
£¨2£©Ö±ÏßlÓëÍÖÔ²C½»ÓÚP¡¢QÁ½µã£¬Çó|AP|•|AQ|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®É躯Êýf£¨x£©=lnx+$\frac{1}{x}$-1
£¨1£©Çóf£¨x£©µÄ×îСֵ£®
£¨2£©ÈôÊýÁÐ{an}Âú×㣬a1=1£¬an+1=f£¨an£©+2£¨n¡ÊN*£©£¬Ö¤Ã÷£º2£¼an£¼3£¨n¡Ý3£¬n¡ÊN*£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=£¨$\frac{1}{2}$x+a£©£¨x-$\sqrt{3}$£©ÎªÅ¼º¯Êý£¬Ôòf£¨3£©=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÔÚÒÑÖªÈýÀâ×¶P-ABCÖУ¬PA=4£¬AB=AC=2$\sqrt{3}$£¬BC=6£¬PA¡ÍÃæABC£¬Ôò´ËÈýÀâ×¶µÄÍâ½ÓÇòµÄ±íÃæ»ýΪ64¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÔÚÕý·½ÌåABCD-A1B1C1D1ÖУ¬ÇóÖ¤£ºÆ½ÃæAB1D1¡ÍÆ½ÃæAA1C1C£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸