精英家教网 > 高中数学 > 题目详情
1.如图,在正方体ABCD-A1B1C1D1中,求证:平面AB1D1⊥平面AA1C1C.

分析 推导出A1C1⊥B1D1,AA1⊥B1D1,由此能证明平面AB1D1⊥平面AA1C1C.

解答 证明:在正方体ABCD-A1B1C1D1中,
∵四边形A1B1C1D1是正方形,∴A1C1⊥B1D1
∵AA1⊥平面A1B1C1D1,B1D1?平面A1B1C1D1
∴AA1⊥B1D1
∵AA1∩A1C1=A1
∴B1D1⊥平面AA1C1C,
∵B1D1?平面AB1D1
∴平面AB1D1⊥平面AA1C1C.

点评 本题考查面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ,|$\overrightarrow{a}$|≥1,|$\overrightarrow{b}$|≥3,且|$\overrightarrow{a}$|,$\overrightarrow{a}$•$\overrightarrow{b}$,|$\overrightarrow{b}$|成等比数列,则cos2θ的最大值为(  )
A.-$\frac{1}{2}$B.-$\frac{2}{3}$C.-$\frac{1}{3}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果函数f(x)=log3x,那么f($\frac{1}{3}$)等于(  )
A.-1B.$-\frac{1}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在平面直角坐标系中,与点A(1,2)的距离为2,且与直线3x-4y=0的距离为1的点共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{{{e^{-x}}}}{x}$.
(1)求曲线y=f(x)在点$(1,\frac{1}{e})$处的切线方程;
(2)求函数y=f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=ax2-x,若对任意x1,x2∈[2,+∞),且x1≠x2,不等式$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0恒成立,则实数a的取值范围是[$\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a∈R,则“a=1“是“直线l1:a2x+2y-1=0与直线l2:x+2y+4=0平行“的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若圆C:x2+y2-2x-4y+m=0与直线x+2y-3=0相交于M,N两点,且|MN|=$\frac{2\sqrt{5}}{5}$,则实数m的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.有一块半径为R(R是正常数)的半圆形空地,开发商计划征地建一个矩形的游泳池ABCD和其附属设施,附属设施占地形状是等腰△CDE,其中O是圆心,A、B在圆的直径上,C,D,E在半圆周上,如图,设∠BOC=θ,征地面积为f(θ),当θ满足g(θ)=f(θ)+R2sinθ取得最大值时,开发效果最佳,开发效果最佳的角θ和g(θ)的最大值分别为(  )
A.$\frac{π}{3}$,R2($\frac{1}{2}$+$\sqrt{2}$)B.$\frac{π}{4}$,R2($\frac{1}{2}$+$\sqrt{2}$)C.$\frac{π}{4}$,R2(1+$\sqrt{2}$)D.$\frac{π}{6}$,R2(1+$\sqrt{2}$)

查看答案和解析>>

同步练习册答案