| A. | $\frac{π}{3}$,R2($\frac{1}{2}$+$\sqrt{2}$) | B. | $\frac{π}{4}$,R2($\frac{1}{2}$+$\sqrt{2}$) | C. | $\frac{π}{4}$,R2(1+$\sqrt{2}$) | D. | $\frac{π}{6}$,R2(1+$\sqrt{2}$) |
分析 连结OE,用θ表示出BC,OB,代入梯形面积公式即可得出f(θ),则g(θ)=R2(1+sinθ)cosθ+R2sinθ=R2(sinθ+cosθ+sinθcosθ),令sinθ+cosθ=t,利用换元法求出g(θ)的最值及对应的θ.
解答 解:连结OE,在Rt△OBC中,BC=Rsinθ,OB=Rcosθ,![]()
∴S梯形OBCE=$\frac{1}{2}$(Rsinθ+R)Rcosθ=$\frac{1}{2}$R2(1+sinθ)cosθ,
∴f(θ)=2S梯形OBCE=R2(1+sinθ)cosθ,θ∈(0,$\frac{π}{2}$).
则g(θ)=R2(1+sinθ)cosθ+R2sinθ=R2(sinθ+cosθ
+sinθcosθ),
令t=sinθ+cosθ=$\sqrt{2}$sin(θ+$\frac{π}{4}$),则t∈(1,$\sqrt{2}$],
sinθcosθ=$\frac{{t}^{2}-1}{2}$,
∴g(θ)=R2($\frac{{t}^{2}-1}{2}$+t)=$\frac{{R}^{2}}{2}$[(t+1)2-2],
令h(t)=$\frac{{R}^{2}}{2}$[(t+1)2-2],则h(t)在(1,$\sqrt{2}$]上单调递增,
∴当t=$\sqrt{2}$,即θ=$\frac{π}{4}$时,h(t)取得最大值($\frac{1}{2}$+$\sqrt{2}$)R2 .
故选:B.
点评 本题考查了函数模型的应用,考查函数最值的计算及其几何意义,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2014}{3}$ | B. | $\frac{2014}{9}$ | C. | $\frac{4028}{3}$ | D. | $\frac{4028}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 0 | C. | -$\frac{1}{2}$ | D. | -$\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=\frac{1}{x+4}$ | B. | y=logπ|x| | C. | $y={x^{-\frac{2}{3}}}$ | D. | y=5-3x3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com