精英家教网 > 高中数学 > 题目详情
19.若a>0,b>0,a与b的等差中项是5,则ab的最大值是25.

分析 由等差数列中项的性质可得a+b=10,再由基本不等式的变形,即可得到所求最大值.

解答 解:a>0,b>0,a与b的等差中项是5,
可得a+b=10,
由ab≤($\frac{a+b}{2}$)2=25,
当且仅当a=b=5取得最大值25,
故答案为:25.

点评 本题考查等差数列中项的定义,以及基本不等式的运用:求最值,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在平面直角坐标系中,与点A(1,2)的距离为2,且与直线3x-4y=0的距离为1的点共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若圆C:x2+y2-2x-4y+m=0与直线x+2y-3=0相交于M,N两点,且|MN|=$\frac{2\sqrt{5}}{5}$,则实数m的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=$\frac{\sqrt{x}}{lg(1-x)}$的定义域为(0,1)(结果用区间表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在等比数列{an}中,已知a1=2,a2=4,那么a5等于(  )
A.6B.8C.32D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解关于x的不等式.
(1)-2x2+4x-3>0;
(2)12x2-ax>a2(a∈R);
(3)$\frac{a(x-1)}{x-2}$>1(a>0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.有一块半径为R(R是正常数)的半圆形空地,开发商计划征地建一个矩形的游泳池ABCD和其附属设施,附属设施占地形状是等腰△CDE,其中O是圆心,A、B在圆的直径上,C,D,E在半圆周上,如图,设∠BOC=θ,征地面积为f(θ),当θ满足g(θ)=f(θ)+R2sinθ取得最大值时,开发效果最佳,开发效果最佳的角θ和g(θ)的最大值分别为(  )
A.$\frac{π}{3}$,R2($\frac{1}{2}$+$\sqrt{2}$)B.$\frac{π}{4}$,R2($\frac{1}{2}$+$\sqrt{2}$)C.$\frac{π}{4}$,R2(1+$\sqrt{2}$)D.$\frac{π}{6}$,R2(1+$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某学校计划举办“国学”系列讲座,为了解学生的国学素养,在某班随机地抽取8名同学进行国学素养测试,这8名同学的测试成绩的茎叶图如图所示.
(Ⅰ)根据这8名同学的测试成绩,估计该班学生国学素养测试的平均成绩;
(Ⅱ)规定成绩大于75分为优秀,若从这8名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.观察如图图形(1)、(2)、(3)、(4).设第n个图形包含f(n)个小长方形.则f(6)=(  )
A.36B.41C.56D.61

查看答案和解析>>

同步练习册答案