精英家教网 > 高中数学 > 题目详情
5.某学校计划举办“国学”系列讲座,为了解学生的国学素养,在某班随机地抽取8名同学进行国学素养测试,这8名同学的测试成绩的茎叶图如图所示.
(Ⅰ)根据这8名同学的测试成绩,估计该班学生国学素养测试的平均成绩;
(Ⅱ)规定成绩大于75分为优秀,若从这8名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优秀的概率.

分析 (Ⅰ)利用茎叶图及平均数定义能出这8名同学的平均成绩.
(Ⅱ)设“两名同学的国学素养测试成绩均为优秀”为事件A,由题意得从8名学生中随机选取一男一女两名同学国学素养测试成绩,利用列举法求出所有可能的结果有16个,事件A包含的结果有3个,由此能求出这两名同学的国学素养测试成绩均为优秀的概率.

解答 解:(Ⅰ)设这8名同学的平均成绩为$\overline{x}$,
则$\overline{x}$=$\frac{1}{8}$(64+72+74+78+56+77+78+85)=73.
(Ⅱ)设“两名同学的国学素养测试成绩均为优秀”为事件A,
由题意得从8名学生中随机选取一男一女两名同学国学素养测试成绩,
所有可能的结果有16个,分别为:
(64,56),(64,77),(64,78),(64,85),(72,56),(72,77),(72,78),(72,85),
(74,56),(74,77),(74,78),(74,85),(78,56),(78,77),(78,78),(78,85),
事件A包含的结果有3个,分别为:(78,77),(78,78),(78,85),
∴这两名同学的国学素养测试成绩均为优秀的概率P(A)=$\frac{3}{16}$.

点评 本题考查平均数、概率的求法,考查茎叶图、平均数、概率、列举法等基础知识,考查运算求解能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.由曲线y=x2和直线y=x+2围成封闭图形的面积是(  )
A.$\frac{10}{3}$B.$\frac{7}{6}$C.$\frac{9}{2}$D.$\frac{13}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若a>0,b>0,a与b的等差中项是5,则ab的最大值是25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数$\frac{3+4i}{i}$=(  )
A.-4-3iB.-4+3iC.4+3iD.4-3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为选拔参加“全市高中数学竞赛”的选手,某中学举行了一次“数学竞赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).
(1)求样本容量n和频率分布直方图中的x、y的值并求出抽取学生的平均分;
(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“全市高中数学竞赛”,求所抽取的2名学生中至少有一人得分在[90,100]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列结论中正确的是(  )
A.若两个变量的线性相关性越强,则相关系数的绝对值越接近于0
B.回归直线至少经过样本数据中的一个点
C.独立性检验得到的结论一定正确
D.利用随机变量X2来判断“两个独立事件X、Y的关系”时,算出的X2值越大,判断“X、Y有关”的把握越大

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若复数z=-9-i,则$\overrightarrow{z}$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对于任意两个正实数a,b,定义a*b=λ×$\frac{a}{b}$,其中常数λ∈(1,$\frac{\sqrt{6}}{2}$),“×”时实数乘法运算,若8*3=3,则λ=$\frac{9}{8}$;若a≥b>0,a*b与b*a都是集合{x|x=$\frac{n}{2}$,n∈Z}中的元素,则a*b=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列各组函数中,f(x)与g(x)相等的一组是(  )
A.f(x)=x,g(x)=$\sqrt{{x}^{2}}$B.f(x)=|x-1|,g(x)=$\left\{\begin{array}{l}{x-1(x≥1)}\\{1-x(x<1)}\end{array}\right.$
C.f(x)=1,g(x)=$\frac{|x|}{x}$D.f(x)=$\frac{{x}^{2}-9}{x+3}$,g(x)=x-3

查看答案和解析>>

同步练习册答案