精英家教网 > 高中数学 > 题目详情
14.在等比数列{an}中,已知a1=2,a2=4,那么a5等于(  )
A.6B.8C.32D.16

分析 等比数列{an}的公比设为q,由等比数列的通项公式可得公比q=2,再由通项公式即可得到所求值.

解答 解:等比数列{an}的公比设为q,
已知a1=2,a2=4,
可得q=$\frac{{a}_{2}}{{a}_{1}}$=2,
则a5=a1q4=2•24=32,
故选:C.

点评 本题考查等比数列的通项公式及应用,考查方程思想和运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知△ABC的三个内角A,B,C所对应的边分别为a,b,c,且满足asinB=$\sqrt{3}$bcosA.
(1)求A的大小;
(2)若a=7,b=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若点M(a,b)在函数y=-x2+3lnx的图象上,点N(c,d)在函数y=x-2的图象上,则$\sqrt{(a+c)^{2}+(b+d)^{2}}$的最小值为(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.桌面上放着3个半径为2014的球,两两相切,在它上方的空隙里放入一个球使其顶点(最高处)恰巧和 3个球的顶点在同一平面上,则该球的半径等于(  )
A.$\frac{2014}{3}$B.$\frac{2014}{9}$C.$\frac{4028}{3}$D.$\frac{4028}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x+1,x≤0}\\{-(x-1)^{2},x>0}\end{array}\right.$,使f(x)≥-1成立的x的取值范围是(  )
A.[-4,2)B.[-4,2]C.(0,2)D.(-4,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若a>0,b>0,a与b的等差中项是5,则ab的最大值是25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,圆O的半径为2,点A满足OA=1.设点B,C为圆O上的任意两点,则$\overrightarrow{AC}•\overrightarrow{BC}$的最小值是(  )
A.2B.0C.-$\frac{1}{2}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为选拔参加“全市高中数学竞赛”的选手,某中学举行了一次“数学竞赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).
(1)求样本容量n和频率分布直方图中的x、y的值并求出抽取学生的平均分;
(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“全市高中数学竞赛”,求所抽取的2名学生中至少有一人得分在[90,100]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.执行如图所示的程序框图,若输出的y=6,则输入的x=-6或3.

查看答案和解析>>

同步练习册答案