精英家教网 > 高中数学 > 题目详情
9.已知f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x+1,x≤0}\\{-(x-1)^{2},x>0}\end{array}\right.$,使f(x)≥-1成立的x的取值范围是(  )
A.[-4,2)B.[-4,2]C.(0,2)D.(-4,2]

分析 由分段函数,讨论x≤0,x>0,由一次不等式和二次不等式的解法,解不等式,求并集即可得到所求范围.

解答 解:f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x+1,x≤0}\\{-(x-1)^{2},x>0}\end{array}\right.$,
由f(x)≥-1,
可得$\left\{\begin{array}{l}{x≤0}\\{\frac{1}{2}x+1≥-1}\end{array}\right.$或$\left\{\begin{array}{l}{x>0}\\{-(x-1)^{2}≥-1}\end{array}\right.$,
即$\left\{\begin{array}{l}{x≤0}\\{x≥-2}\end{array}\right.$或$\left\{\begin{array}{l}{x>0}\\{0≤x≤2}\end{array}\right.$,
即有-4≤x≤0或0<x≤2,
可得-4≤x≤2.
即x的取值范围是[-4,2].
故选:B.

点评 本题考查分段函数的运用:解不等式,考查一次不等式和二次不等式的解法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.如果直线3x-y=0与直线mx+y-1=0平行,那么m的值为(  )
A.-3B.$-\frac{1}{3}$C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x-2lnx(a∈R).求曲线y=f(x)在点A(1,f(1))处的切线方程和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若${∫}_{1}^{n}$(2x-1)dx=6,则二项式(1-2x)n的展开式各项系数和为(  )
A.-1B.26C.1D.2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的函数f(x),周期为4,当x∈[0,4)时,f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,0≤x<2}\\{2x-4,2≤x<4}\end{array}\right.$,当x∈(-4,b)时,函数y=f(x)-1有5个零点,则实数b的取值范围为(  )
A.(5,$\frac{13}{2}$]B.[5,$\frac{13}{2}$)C.(5,$\frac{13}{2}$)D.[5,$\frac{13}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在等比数列{an}中,已知a1=2,a2=4,那么a5等于(  )
A.6B.8C.32D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{{\begin{array}{l}{-{x^2}+2x}&{x∈({-∞,2})}\\{3f({x-2})}&{x∈[{2,+∞})}\end{array}}$,则函数g(x)=f(x)-cosπx在区间[0,6]内所有零点的和为(  )
A.18B.20C.36D.40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.甲、乙两人参加歌唱比赛,晋级概率分别为$\frac{4}{5}$和$\frac{3}{4}$,且两人是否晋级相互独立,则两人中恰有一人晋级的概率为(  )
A.$\frac{19}{20}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{7}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行图示的程序框图,则输出的结果为(  )
A.7B.9C.10D.11

查看答案和解析>>

同步练习册答案