分析 (1)由6Sn=an2+3an+2,可得n≥2时,6Sn-1=${a}_{n-1}^{2}$+3an-1+2,相减可得:(an+an-1)(an-an-1-3)=0,由an+an-1>0,an-an-1=3,利用等差数列的通项公式即可得出.
(2)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$,利用“裂项求和方法”即可得出.
解答 解:(1)由6Sn=an2+3an+2,可得n≥2时,6Sn-1=${a}_{n-1}^{2}$+3an-1+2,
相减可得:6an=an2+3an+2-(${a}_{n-1}^{2}$+3an-1+2),
整理为:(an+an-1)(an-an-1-3)=0,
∵an+an-1>0,an-an-1=3,
∴数列{an}是等差数列,公差为3,a1=1.
∴an=1+3(n-1)=3n-2.
(2)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$,
∴数列{bn}的前n项和Tn=$\frac{1}{3}$$[(1-\frac{1}{4})$+$(\frac{1}{4}-\frac{1}{7})$+…+$(\frac{1}{3n-2}-\frac{1}{3n+1})]$=$\frac{1}{3}(1-\frac{1}{3n+1})$=$\frac{n}{3n+1}$.
点评 本题考查了“裂项求和方法”、等差数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $3\sqrt{3}$ | B. | $3\sqrt{2}$ | C. | 2 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2)∪(0,2) | B. | (-2,0)∪(2,+∞) | C. | (-∞,-2)∪(-2,2) | D. | (0,2)∪(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | -4 | C. | $\frac{2}{3}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1125$\sqrt{2}$π | B. | 3375$\sqrt{2}$π | C. | 450π | D. | 900π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1-e | B. | e-1 | C. | 1-e | D. | e+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com