精英家教网 > 高中数学 > 题目详情
4.各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N+,6Sn=an2+3an+2.
(1)求数列{an}的通项公式;
(2)记bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求数列{bn}的前n项和Tn

分析 (1)由6Sn=an2+3an+2,可得n≥2时,6Sn-1=${a}_{n-1}^{2}$+3an-1+2,相减可得:(an+an-1)(an-an-1-3)=0,由an+an-1>0,an-an-1=3,利用等差数列的通项公式即可得出.
(2)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$,利用“裂项求和方法”即可得出.

解答 解:(1)由6Sn=an2+3an+2,可得n≥2时,6Sn-1=${a}_{n-1}^{2}$+3an-1+2,
相减可得:6an=an2+3an+2-(${a}_{n-1}^{2}$+3an-1+2),
整理为:(an+an-1)(an-an-1-3)=0,
∵an+an-1>0,an-an-1=3,
∴数列{an}是等差数列,公差为3,a1=1.
∴an=1+3(n-1)=3n-2.
(2)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$,
∴数列{bn}的前n项和Tn=$\frac{1}{3}$$[(1-\frac{1}{4})$+$(\frac{1}{4}-\frac{1}{7})$+…+$(\frac{1}{3n-2}-\frac{1}{3n+1})]$=$\frac{1}{3}(1-\frac{1}{3n+1})$=$\frac{n}{3n+1}$.

点评 本题考查了“裂项求和方法”、等差数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.如图动直线l:y=b与抛物线y2=4x交于点A,与椭圆$\frac{x^2}{2}+{y^2}$=1交于抛物线右侧的点B,F为抛物线的焦点,则|AF|+|BF|+|AB|的最大值为(  )
A.$3\sqrt{3}$B.$3\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f'(x)是奇函数f(x)(x∈R)的导函数,f(-2)=0,当x>0时,$f(x)+\frac{x}{3}f'(x)>0$,则使得f(x)>0成立的x的取值范围是(  )
A.(-∞,-2)∪(0,2)B.(-2,0)∪(2,+∞)C.(-∞,-2)∪(-2,2)D.(0,2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设等比数列{an}的前n项和为Sn,若a3=4,S3=7,则S6的值为(  )
A.31B.32C.63D.64

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.曲线y=sinx-2x在x=π处的切线方程为3x+y-π=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若三条直线ax+y+1=0,y=3x,x+y=4,交于一点,则a的值为(  )
A.4B.-4C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.由8个面围成的几何体,每个面都是正三角形,并且有四个顶点A,B,C,D在同一平面上,ABCD是边长为15的正方形,则该几何体的外接球的体积为(  )
A.1125$\sqrt{2}$πB.3375$\sqrt{2}$πC.450πD.900π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的函数f(x)满足:y=f(x-1)的图象关于(1,0)点对称,且当x≥0时恒有$f(x-\frac{3}{2})=f(x+\frac{1}{2})$,当x∈[0,2)时,f(x)=ex-1,则f(2016)+f(-2017)=(  )
A.-1-eB.e-1C.1-eD.e+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.$\frac{{tan{{12}°}+tan{{18}°}}}{{1-tan{{12}°}•tan{{18}°}}}$=(  )
A.1B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案