精英家教网 > 高中数学 > 题目详情
3.等比数列{an}的首项为a1=2015,公比$q=-\frac{1}{2}$.设f(n)表示该数列的前n项的积,则当n=12时,f(n)有最大值.

分析 根据等比数列的通项公式和题意求出f(n),再与f(n-1)作商化简后,判断出|$\frac{f(n)}{f(n-1)}$|与1的关系,可得到|f(n)|单调性和f(n)取最大值时n的值.

解答 解:∵等比数列{an}的首项为a1=2015,公比$q=-\frac{1}{2}$,
∴an=a1qn-1=$2015•{(-\frac{1}{2})}^{n-1}$,
∴当n为奇数时an>0,当n为偶数时,an<0,
∵当n≥2时,$\frac{f(n)}{f(n-1)}$=$\frac{{a}_{1}{a}_{2}{a}_{3}…{a}_{n}}{{a}_{1}{a}_{2}{a}_{3}…{a}_{n-1}}$=an=$2015•{(-1)}^{n-1}{(\frac{1}{2})}^{n-1}$,
∴当n≤11时,|$\frac{f(n)}{f(n-1)}$|>1,此时|f(n)|单调递增,
当n≥12时,|$\frac{f(n)}{f(n-1)}$|<1,此时|f(n)|单调递减,
∵当n=12时,f(11)>0,当n=12时,f(12)<0,
∴当n=12时,f(n)有最大值是${2015^{12}}×{(\frac{1}{2})^{66}}$.
故答案为:12.

点评 本题考查等比数列的通项公式,利用作商法判断单调性是解题的关键,综合性较强,难度较大,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若|$\overrightarrow{a}$|=3,与|$\overrightarrow{b}$|=2,向量$\overrightarrow{a}$与$\overrightarrow{b}$之间夹角为60°,且(3$\overrightarrow{a}$+5$\overrightarrow{b}$)⊥(m$\overrightarrow{a}$-$\overrightarrow{b}$),则实数m=(  )
A.$\frac{23}{32}$B.$\frac{23}{43}$C.$\frac{29}{42}$D.$\frac{21}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.AD、BE分别为△ABC的边BC、AC上的中线,且$\overrightarrow{AD}$=$\overrightarrow{a}$,$\overrightarrow{BE}$=$\overrightarrow{b}$,那么$\overrightarrow{BC}$为(  )
A.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{4}{3}$$\overrightarrow{b}$B.$\frac{2}{3}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow{b}$C.$\frac{2}{3}$$\overrightarrow{a}$-$\frac{4}{3}$$\overrightarrow{b}$D.-$\frac{2}{3}$$\overrightarrow{a}$+$\frac{4}{3}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线m:2x-y-3=0,n:x+y-3=0.
(1)求过两直线m,n交点且与直线l:x+2y-1=0平行的直线方程;
(2)求过两直线m,n交点且与两坐标轴围成面积为4的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)满足x∈(-$\frac{π}{2}$,$\frac{π}{2}$)时,f′(x)>tanx•f(x),则下列式子中正确的序号是④
①2f(0)>f($\frac{π}{3}$);②f(-$\frac{π}{3}$)>$\sqrt{2}$f(-$\frac{π}{4}$);③$\frac{\sqrt{3}}{3}$f($\frac{π}{4}$)<$\frac{\sqrt{2}}{2}$f($\frac{π}{6}$);④2f(-1)<$\frac{1}{cos1}$f($\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于(  )
A.{x|3≤x<4}B.{x|x≥3}C.{x|x>2}D.{x|x≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知x,y满足不等式组$\left\{\begin{array}{l}{y≥0}\\{x+3y-7≥0}\\{2x+y-24≤0}\\{3x-y-6≥0}\end{array}\right.$,试求z=x+y的最大值或最小值及相应的x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点A、B、C的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),α∈($\frac{π}{2}$,$\frac{3π}{2}$).
(1)若|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,求角α的值;
(2)若$\overrightarrow{AC}$•$\overrightarrow{BC}$=$\frac{2}{5}$,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设Sn为正项等比数列{an}的前n项和,且4a1-a3=0,则$\frac{{S}_{3}}{{a}_{1}}$=(  )
A.3B.7C.$\frac{7}{4}$D.3或7

查看答案和解析>>

同步练习册答案